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The Transform Method in general 
Stitch 12/7/21 

This document uses a LaTeX-template in Microsoft Word called WordTEX1.  

1 Introduction – What is the Transform Method? 

1.1 Background 

We use Transforms to make differential equations simpler to solve, and in the Transform Method 
that I describe in detail in this document, a linear first order ODE that is easily solved. The 
Transform method can be used on 2nd order linear partial differential equations. The examples I 
will use involve a PDE that is 2nd order with respect to 𝑥𝑥 and 1st order with respect to time 𝑡𝑡. 
This method works for both constant- and variable-coefficients with roughly equal ease.  

1.2 Prerequisites, for readers and for the problems 

Readers should first go through the [01 Stitch Notes – OPDE Review.pdf], focusing on 2 – 
separation of variables, 6 – Interesting/Important Linear Algebra, and 7 – Superposition Principle 
& Fundamental Solutions for an overview of the typical method used to solve PDEs, and the 
basics of eigen-functions, -vectors and -values.  

The Transform Method itself (as far as my examples go) requires a few things: 

1. The problem should be solvable by separation of variables 

2. The problem should be of the first degree with respect to time (although it is theoretically 
possible to use the method on equations with higher degrees wrt time). 

3. We need well-defined boundary and initial conditions to find a specific solution. A general 
solution will be possible without these, as usual. 

 

1  WordTEX can be installed from here: https://www.andrew.cmu.edu/user/twildenh/wordtex/. Without the template and fonts, the 

document will appear less LaTeX-y but should still be readable. The attached PDF should be formatted properly for read-only 
access. 

https://www.andrew.cmu.edu/user/twildenh/wordtex/
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1.3 A brief overview of the transform method and deriving suitable transform 
pairs 

In the examples I encounter, the Transform method has always required turning a partial DE into 
an ordinary DE first by expressing the 𝑥𝑥-portion as a Sturm-Liouville Problem. S-L problems are 
easier to solve, but they almost always require knowing eigenfunctions to some linear operator. 
An example of this expression may be 

 𝑞𝑞𝑡𝑡(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 0 (1.1) 
  
such that 
𝑞𝑞(𝑥𝑥, 0) = 𝑞𝑞0(𝑥𝑥) 
𝑞𝑞(0, 𝑡𝑡) = 𝐾𝐾𝑞𝑞𝑥𝑥(0, 𝑡𝑡) 
𝑞𝑞(1, 𝑡𝑡) = 𝐾𝐾𝑞𝑞𝑥𝑥(1, 𝑡𝑡) 

Suppose we had some magic transform function 𝑇𝑇 [⋅](𝑗𝑗) that is linear and we apply it to both sides 
of the above so that we can get  

𝑇𝑇 [𝑞𝑞𝑡𝑡(𝑥𝑥, 𝑡𝑡)](𝑗𝑗) − 𝑇𝑇 [𝑞𝑞𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡)](𝑗𝑗) = 0 

Suppose also that this magic function can turn second derivatives into non-derivative functions, 
so that 𝑇𝑇 [𝑞𝑞𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡)](𝑗𝑗) = 𝑇𝑇 [−𝜆𝜆𝑞𝑞(𝑥𝑥, 𝑡𝑡)](𝑗𝑗). This supposition only requires us to solve… an S-L 
problem like this! 

 𝑋𝑋𝑥𝑥𝑥𝑥(𝑥𝑥) + 𝜆𝜆𝑋𝑋(𝑥𝑥) = 0, (1.2) 
  
such that 
𝑋𝑋(0) = 𝐾𝐾𝑋𝑋𝑥𝑥(0) 
𝑋𝑋(1) = 𝐾𝐾𝑋𝑋𝑥𝑥(1) 

The DE here can easily be represented as 𝑋𝑋𝑥𝑥𝑥𝑥(𝑥𝑥) = −𝜆𝜆𝑋𝑋(𝑥𝑥), which looks exactly like the 
eigenvalue/function equation 𝑨𝑨𝑨𝑨 = 𝜆𝜆𝑨𝑨, where 𝑨𝑨, 𝑨𝑨 are a matrix and vector respectively and 𝜆𝜆 
is an eigenvalue. In this case, 𝑨𝑨 is the Linear Transformation, and applying this transform to a 
vector 𝑨𝑨 is equivalent to multiplying the vector by the eigenvalue 𝜆𝜆. The trick is to see that all 
such S-L problems are basically just the same: we can suppose some differential operator 
ℒ[𝑋𝑋](𝑥𝑥) = 𝑋𝑋𝑥𝑥𝑥𝑥(𝑥𝑥) that applies to the (eigen)function 𝑋𝑋 and returns its second derivative, AND 
that it can be expressed as some eigenvalue 𝜆𝜆 multiplied by 𝑋𝑋(𝑥𝑥).  
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Seeing this, we only need to find some magic function so that 𝑇𝑇{ℒ[𝑋𝑋](𝑥𝑥)}(𝑗𝑗) = 𝑇𝑇{−𝜆𝜆𝑋𝑋(𝑥𝑥)}(𝑗𝑗). 
One good way to do this is if the magic transform function 𝑇𝑇 [⋅](𝑗𝑗) is a projection/inner product. 
Since we can only project the original ‘input’ (ℒ[𝑋𝑋](𝑥𝑥)) on one function at a time, we would need 
to project it on infinitely many eigenfunctions to fully represent the original real ‘input’. Looking 
back at the basics of projections, this is easily done by using infinitely many eigenfunctions that 
are orthogonal to each other.  

This also makes clear what 𝑗𝑗 is: changing it means we are using a different eigenfunction to project 
on. All we need to find now are the correct eigenfunctions to represent it properly. Once we have 
the eigenfunctions, we can derive the correct transform pair by making sure we get the original 

function back if we perform 𝑇𝑇 −1 ��𝑇𝑇 [𝜙𝜙(𝑥𝑥)](𝑗𝑗)�
𝑗𝑗=0
∞ � (𝑥𝑥) = 𝜙𝜙(𝑥𝑥) (inverse transform on the infinite 

sequence given by the forward transform). The pair refers to mainly the correct inner product for 
the forward transform and the correct coefficients on each of the infinitely many terms for the 
inverse transform. 

The examples below will use the following general 4 steps to apply the transform method: 

1. Express the 𝑥𝑥 part of the PDE as a linear operator ℒ (e.g. 𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑥𝑥𝑥𝑥 = 0 ⇒ ℒ[𝑞𝑞] = −𝑞𝑞𝑥𝑥𝑥𝑥). 
Then, apply the appropriate inner product to the linear operator, and integrate by parts 
to derive the Sturm-Liouville Problem that will later give us eigenfunctions 𝐸𝐸𝑗𝑗 (e.g. 

ℒ�𝐸𝐸𝑗𝑗� = 𝜆𝜆𝐸𝐸𝑗𝑗, �𝐸𝐸𝑗𝑗𝑞𝑞𝑥𝑥 − 𝐸𝐸𝑗𝑗
′𝑞𝑞�01 = 0) 

2. Use these Eigenfunctions and work backwards from our preferred inverse transform 
definition, to get the correct weights for our weighted infinite sum. (The inverse transform 
is the weighted infinite sum) 

3. Solve the whole PDE by transforming it so we end up with a simpler problem wrt 𝑡𝑡 alone. 

 

It is useful to learn how to derive the correct eigenfunctions and transform pair through a few 
examples. In all the following examples, the general gist is that we solve the S-L problem to find 
our class(es) of eigenfunctions and then find the correct coefficients for the inverse transform sum.  
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2 Example – The Robin Heat Equation (self-adjoint) 

2.1 Defining the Linear Operator and finding the S-L Problem 

Suppose the problem posed earlier (Equation (1.1)): 𝑞𝑞𝑡𝑡(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 0. We are going to 
disregard the boundaries and initial conditions for now, including them as we need them.  

As mentioned before, we want some magic transform to solve this problem for us. In this problem 
we use the 𝐿𝐿2 inner product ⟨𝐴𝐴, 𝐵𝐵⟩ = ∫ 𝐴𝐴𝐵𝐵1

0
 𝑑𝑑𝑥𝑥 and we want to find some eigenfunction 𝐸𝐸𝑗𝑗 (it 

depends on 𝑗𝑗 because our transform outputs a sequence indexed by 𝑗𝑗 remember?) such that 

�𝑞𝑞𝑡𝑡, 𝐸𝐸𝑗𝑗� + �−𝑞𝑞𝑥𝑥𝑥𝑥, 𝐸𝐸𝑗𝑗� = 0 
  

and  �−𝑞𝑞𝑥𝑥𝑥𝑥, 𝐸𝐸𝑗𝑗� = 𝜆𝜆𝑗𝑗�𝑞𝑞, 𝐸𝐸𝑗𝑗� 
Which is equivalent to   �ℒ[𝑞𝑞], 𝐸𝐸𝑗𝑗� = 𝜆𝜆𝑗𝑗�𝑞𝑞, 𝐸𝐸𝑗𝑗� 

Luckily, ℒ[𝜙𝜙](𝑥𝑥) = 𝜙𝜙′′(𝑥𝑥) is self-adjoint so �ℒ[𝑞𝑞], 𝐸𝐸𝑗𝑗� = �𝑞𝑞, ℒ[𝐸𝐸𝑗𝑗]�. The other non-self-adjoint case 

is discussed later. 

If we are able to do this, we reduce our 2nd order PDE into a 1st order ODE wrt time 𝑡𝑡!2 To find 
a suitable 𝐸𝐸𝑗𝑗 we look at what this inner product would actually be: 

� 𝑞𝑞𝑥𝑥𝑥𝑥𝐸𝐸𝑗𝑗

1

0
 𝑑𝑑𝑥𝑥 = �𝐸𝐸𝑗𝑗𝑞𝑞𝑥𝑥 − 𝐸𝐸𝑗𝑗

′𝑞𝑞�𝑥𝑥=0
𝑥𝑥=1 + � 𝐸𝐸𝑗𝑗

′′𝑞𝑞
1

0
 𝑑𝑑𝑥𝑥 

This gives us 2 requirements to fulfil for our transform to work.  

1. The square parentheses term needs to disappear. After using our original PDE boundary 
conditions and then some simplification (see 04 – Robin Heat – Transform.pdf for the full 
solution), we need 

𝐸𝐸𝑗𝑗(0) = 𝐾𝐾𝐸𝐸𝑗𝑗
′(0) 

and 𝐸𝐸𝑗𝑗(1) = 𝐾𝐾𝐸𝐸𝑗𝑗
′(1) 

 

2 We just need to inverse transform �𝑞𝑞𝑡𝑡, 𝐸𝐸𝑗𝑗� + 𝜆𝜆𝑗𝑗�𝑞𝑞, 𝐸𝐸𝑗𝑗� = 0 and we get our 1st order ODE in time. 
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2. The last integrand needs to be expressible in terms of 𝑞𝑞 and 𝐸𝐸𝑗𝑗 only (without any 

derivatives). This means requiring that 

𝐸𝐸𝑗𝑗
′′(𝑥𝑥) = 𝜆𝜆𝑗𝑗𝐸𝐸𝑗𝑗(𝑥𝑥) 

Putting these 2 requirements together we can get our S-L problem3, and it is solved using easily 
found eigenfunctions 𝐸𝐸𝑗𝑗(𝑥𝑥). With this, we have our forward transform applied on function 𝜙𝜙(𝑥𝑥): 

𝑇𝑇 [𝜙𝜙(𝑥𝑥)](𝑗𝑗) = � 𝜙𝜙(𝑥𝑥)𝐸𝐸𝑗𝑗(𝑥𝑥)
1

0
 𝑑𝑑𝑥𝑥 

2.2 The correct weights for the inverse transform 

Now, we need to think about the inverse transform. Since we found 𝐸𝐸𝑗𝑗 through the S-L problem, 

they should be orthogonal to each other, if the linear operator ℒ is self-adjoint4, which it is for 
the Robin Heat equation. Now, we know that the inverse transform function 𝑇𝑇 −1[⋅](𝑥𝑥) should be 
a weighted sum such as 

𝑇𝑇 −1[𝑇𝑇 [𝜙𝜙(⋅, 𝑡𝑡)](𝑗𝑗)] ≡ 𝜙𝜙(⋅, 𝑡𝑡) = � 𝐷𝐷𝑗𝑗𝐸𝐸𝑗𝑗(𝑥𝑥)
∞

𝑗𝑗=0
 

Following the steps as laid out in [03 Dave’s Transform.pdf], we can apply the forward transform 
to the second and third part of the equation, and use the linearity of the transform to get 

 𝑇𝑇 [𝜙𝜙(⋅, 𝑡𝑡)](𝑘𝑘) = � 𝐷𝐷𝑗𝑗𝑇𝑇 �𝐸𝐸𝑗𝑗(𝑥𝑥)�(𝑘𝑘)
∞

𝑗𝑗=0
 (2.1) 

Where 𝑇𝑇 �𝐸𝐸𝑗𝑗(𝑥𝑥)�(𝑗𝑗) = ∫ 𝐸𝐸𝑘𝑘(𝑥𝑥)𝐸𝐸𝑗𝑗(𝑥𝑥)1
0

 𝑑𝑑𝑥𝑥. 

We know (mostly because we have already “done” the separation of variables approach) that 
𝐸𝐸𝑗𝑗 ⊥ 𝐸𝐸𝑘𝑘 iff 𝑗𝑗 ≠ 𝑘𝑘. This can be verified by simply performing the inner product (since we already 

know 𝐸𝐸𝑗𝑗 explicitly). By performing the inner product we also realise that the inner product is 

non-zero when 𝑗𝑗 = 𝑘𝑘 = 0 and when 𝑗𝑗 = 𝑘𝑘 ≠ 0, and 0 otherwise. See the top of page 4 of [04 Robin 

 

3 We get exactly the same S-L problem (1.2) as shown on page 2. 
4 Self-adjoint, for now, just means that both the forward and inverse transforms use the same kernel/eigenfunction 𝐸𝐸𝑗𝑗(𝑥𝑥). I go into 

this topic in the later examples where we encounter non-self-adjoint linear operators. 
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Heat – Transform.pdf] for the derivation of this result. Remembering that 𝐾𝐾 was defined by our 
boundary conditions, we get that 

⇒ 𝑇𝑇�𝐸𝐸𝑗𝑗(𝑥𝑥)�(𝑘𝑘) =

⎩
��
⎨
��
⎧ 0, 𝑗𝑗 ≠ 𝑘𝑘 and eigenfunctions orthogonal

𝐾𝐾𝐾𝐾2/𝐾𝐾 − 𝐾𝐾
2

, 𝑗𝑗 = 𝑘𝑘 = 0
1
2

[(𝐾𝐾𝑗𝑗𝐾𝐾)2 + 1], 𝑗𝑗 = 𝑘𝑘 ≠ 0

 

Substituting this into Equation (2.1) and making 𝐷𝐷𝑗𝑗 the subject gives us 

𝐷𝐷𝑗𝑗 =

⎩�
�⎨
��
⎧ 2𝑇𝑇 [𝜙𝜙](𝑘𝑘)

𝐾𝐾𝐾𝐾2/𝐾𝐾 − 𝐾𝐾
 , 𝑗𝑗 = 𝑘𝑘 = 0

2𝑇𝑇 [𝜙𝜙](𝑘𝑘)
(𝐾𝐾𝑗𝑗𝐾𝐾)2 + 1

, 𝑗𝑗 = 𝑘𝑘 > 0
 

Thus, we now have both our forward transform (aka inner product) and the inverse transform 
(the infinite sum whose weights are now known).  

2.3 Solving the PDE by transforming it 

After applying the transform to both sides of the equation, we get  

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) − 𝜆𝜆𝑗𝑗𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) = 0 

Seeing that this is just a 1st order ODE in time, the solution, using the initial condition 𝑞𝑞(𝑥𝑥, 0) =
𝑞𝑞0 is 

𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) = 𝑇𝑇 [𝑞𝑞0](𝑗𝑗)𝐾𝐾𝜆𝜆𝑗𝑗𝑡𝑡 

(Try substituting 𝑓𝑓(𝑡𝑡) = 𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) if this is not clear). 

Now we notice that 𝐷𝐷𝑗𝑗 has 𝑇𝑇 [𝜙𝜙](𝑗𝑗) in its numerator, and we have just found it to be equal to 

𝑇𝑇 [𝑞𝑞0](𝑗𝑗)𝐾𝐾𝜆𝜆𝑗𝑗𝑡𝑡. So, our solution requires simply reconstructing 𝑞𝑞(𝑥𝑥, 𝑡𝑡) using an infinite sum: 

𝑞𝑞(𝑥𝑥, 𝑡𝑡) = � 𝐷𝐷𝑗𝑗𝐸𝐸𝑗𝑗(𝑥𝑥)
∞

𝑗𝑗=0
 

Where 
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𝐷𝐷𝑗𝑗 =

⎩�
�⎨
��
⎧2𝑇𝑇 [𝑞𝑞0](𝑗𝑗)𝐾𝐾𝜆𝜆𝑗𝑗𝑡𝑡

𝐾𝐾𝐾𝐾2/𝐾𝐾 − 𝐾𝐾
 , 𝑗𝑗 = 0

2𝑇𝑇 [𝑞𝑞0](𝑗𝑗)𝐾𝐾𝜆𝜆𝑗𝑗𝑡𝑡

(𝐾𝐾𝑗𝑗𝐾𝐾)2 + 1
, 𝑗𝑗 > 0

 

And 𝐸𝐸𝑗𝑗(𝑥𝑥) being the solution to the S-L problem we solved earlier. 
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3 Example – Advection Diffusion Problem – Non-self-adjoint 

In this section we consider the following problem for arbitrary fixed 𝑐𝑐 ∈ ℝ and (𝑥𝑥, 𝑡𝑡) ∈
(0,1) × (0, 𝑇𝑇 ) 

 𝑞𝑞𝑡𝑡(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) + 𝑐𝑐𝑞𝑞𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 0 (1.1) 
subject to 

𝑞𝑞(𝑥𝑥, 0) = 𝑞𝑞0(𝑥𝑥) for 𝑥𝑥 ∈ [0,1] 

I will disregard the exact boundary conditions so the method is generally applicable. As before, 
we will follow the 3-step process. The key learning point here is that non-self-adjoint problems 
will require 2 ‘versions’ of eigenfunctions 𝐸𝐸𝑗𝑗

∗ and 𝐸𝐸𝑘𝑘 (𝑗𝑗 ≠ 𝑘𝑘) such that 𝐸𝐸𝑗𝑗
∗ ⊥ 𝐸𝐸𝑘𝑘 but 𝐸𝐸𝑗𝑗

∗¬⊥ 𝐸𝐸𝑘𝑘
∗ and 

likewise for 𝐸𝐸𝑗𝑗. Thus, the forward transform uses 𝐸𝐸𝑗𝑗
∗ as an eigenfunction and the inverse transform 

uses 𝐸𝐸𝑗𝑗. If you have understood the previous example, it may be clear already that we have to do 

this because we want to find the weights 𝐷𝐷𝑗𝑗 and this requires the infinite sum to collapse into 1 

term (when 𝑗𝑗 = 𝑘𝑘) which in turn requires that 𝐸𝐸𝑗𝑗 ⊥ 𝐸𝐸𝑘𝑘
∗. 

3.1 Finding the Linear Operator and setting up the S-L Problem 

Here, our linear operator is ℒ[𝑞𝑞] = −𝑞𝑞𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑞𝑞𝑥𝑥. Taking inner product with some eigenfunction 
𝐸𝐸𝑗𝑗

∗(𝑥𝑥), we realise after some integration by parts that 

�𝐸𝐸𝑗𝑗
∗(𝑥𝑥), ℒ[𝜙𝜙(𝑥𝑥)]� = �−𝐸𝐸𝑗𝑗

∗(𝑥𝑥)𝜙𝜙′(𝑥𝑥)�01 + �−𝐸𝐸𝑗𝑗
′′∗(𝑥𝑥) − 𝑐𝑐𝐸𝐸𝑗𝑗

′∗(𝑥𝑥), 𝜙𝜙(𝑥𝑥)� 

2 things/requirements pop out of this relation: 

1. The operator ℒ is non-self-adjoint, as we have to define ℒ∗𝐸𝐸𝑗𝑗
∗ = −𝐸𝐸𝑗𝑗

′′∗(𝑥𝑥) − 𝑐𝑐𝐸𝐸𝑗𝑗
′∗(𝑥𝑥). In 

simpler words, the yellow highlighted terms above are not outputs of the same linear 
operator. 

2. The S-L problem would require �−𝐸𝐸𝑗𝑗
∗(𝑥𝑥)𝜙𝜙′(𝑥𝑥)�01 = 0 and −𝐸𝐸𝑗𝑗

′′∗ − 𝑐𝑐𝐸𝐸𝑗𝑗
′∗ = 𝜆𝜆𝑗𝑗𝐸𝐸𝑗𝑗

∗. 

The S-L problem can be solved to find 𝐸𝐸𝑗𝑗
∗.  
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3.2 Inverse Transform Derivation 

Now that we know how to perform the forward transform using 𝑇𝑇 [𝜙𝜙(𝑥𝑥)](𝑗𝑗) = ∫ 𝜙𝜙𝐸𝐸𝑗𝑗
∗1

0
 𝑑𝑑𝑥𝑥, we move 

to finding the inverse transform which is by definition 

𝜙𝜙(𝑥𝑥) = � 𝐷𝐷𝑗𝑗𝐸𝐸𝑗𝑗(𝑥𝑥)
∞

𝑗𝑗=0
 

We can find the weights in exactly the same way as before (transform both sides with index 𝑘𝑘, 
collapse the infinite sum on the RHS into a single term IFF 𝑗𝑗 = 𝑘𝑘). The key to understanding the 
whole ‘adjoint’ problem will be  

𝑇𝑇 �𝐸𝐸𝑗𝑗(𝑥𝑥)�(𝑘𝑘) = � 𝐸𝐸𝑘𝑘
∗(𝑥𝑥)𝐸𝐸𝑗𝑗(𝑥𝑥)

1

0
 𝑑𝑑𝑥𝑥 

Which is non-zero IFF 𝑘𝑘 = 𝑗𝑗 and 0 otherwise. If we had used the same eigenfunction (as if we had 
a self-adjoint problem) for both the forward and inverse transform, they would not be orthogonal 
to each other and the infinite sum would not collapse! With this, we can firstly find the weights 
𝐷𝐷𝑗𝑗 and then transform the whole problem now to get the solution that we have on page 5 of [06 

AdvDiff – Transform.pdf]. 
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4 Example – Bessel RSP – Variable coefficient PDE, self-adjoint 

For my final example, I go through a variable coefficient problem, which is self-adjoint. The key 
takeaway from this example is that the same method as above can be applied wholesale with no 
additional difficulty.  

The problem to solve is that for arbitrary fixed 𝑚𝑚 ∈ ℕ0 and (𝑥𝑥, 𝑡𝑡) ∈ (0,1) × (0, 𝑇𝑇 ) 

 𝑞𝑞𝑡𝑡(𝑥𝑥, 𝑡𝑡) − �𝑞𝑞𝑥𝑥𝑥𝑥 +
1
𝑥𝑥

𝑞𝑞𝑥𝑥 −
𝑚𝑚2

𝑥𝑥2 𝑞𝑞� (𝑥𝑥, 𝑡𝑡) = 0 (1.1) 

subject to 

𝑞𝑞(𝑥𝑥, 0) = 𝑞𝑞0(𝑥𝑥) for 𝑥𝑥 ∈ [0,1] 
and some suitable boundary conditions. 

My full solution to this problem has a few learning prerequisites: 

1. The problem has its ‘𝑥𝑥-component’ in the form of Bessel’s Differential Equation. Bessel’s 
DE has Bessel functions of the first kind as its eigenfunctions. 

2. Bessel functions of the first kind form a basis of functional space over which any function 
can be expressed (similar to trigonometric bases of functional spaces).  

3. This new functional space has a new type of inner product ⟨𝑓𝑓, 𝑔𝑔⟩𝐴𝐴 = ∫ 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑏𝑏
0

 𝑑𝑑𝑥𝑥, 

using which, Bessel functions of the first kind are orthogonal to each other given different 
indices. 

4.1 Deriving the S-L problem 

Our linear operator here would be ℒ[𝜙𝜙](𝑥𝑥) ≡ �𝜙𝜙′′ + 1
𝑥𝑥 𝜙𝜙′ − 𝑚𝑚2

𝑥𝑥2 𝜙𝜙�(𝑥𝑥) = 1
𝑥𝑥 � 𝑑𝑑

𝑑𝑑𝑥𝑥 �𝑥𝑥𝜙𝜙′(𝑥𝑥)� − 𝑚𝑚2

𝑥𝑥 𝜙𝜙(𝑥𝑥)�. 
The latter form is used because it clearly shows the need for a different kind of inner product to 
make eigenfunctions orthogonal. 

With the A-inner product, we also get the self-adjoint relation: �ℒ𝜙𝜙, 𝐸𝐸𝑗𝑗�𝐴𝐴 = �𝜙𝜙,ℒ𝐸𝐸𝑗𝑗�𝐴𝐴, IFF 

�𝑥𝑥𝐸𝐸𝑗𝑗(𝑥𝑥)𝜙𝜙′(𝑥𝑥) − 𝑥𝑥𝐸𝐸𝑗𝑗
′(𝑥𝑥)𝜙𝜙(𝑥𝑥)�01 = 0. This, together with 1 more boundary condition and that ℒ𝐸𝐸𝑗𝑗 =

𝜆𝜆𝑗𝑗𝐸𝐸𝑗𝑗 gives us our S-L problem that we know is solved by Bessel functions of the first kind. 

Thus, we have our forward transform without too much difficulty. 
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4.2 The inverse transform weights 

Again, we try to find weights 𝑐𝑐𝑗𝑗 such that 

𝜙𝜙(𝑥𝑥) = � 𝑐𝑐𝑗𝑗𝐽𝐽𝑚𝑚�𝜆𝜆𝑗𝑗𝑥𝑥�
∞

𝑗𝑗=0
 

Given that the Bessel functions of the first kind are orthogonal to each other IF their arguments 
have different 𝜆𝜆𝑗𝑗 and 𝜆𝜆𝑘𝑘, we have again that 

𝑐𝑐𝑗𝑗 =
�𝜙𝜙, 𝐽𝐽𝑚𝑚�𝜆𝜆𝑗𝑗𝑥𝑥��𝐴𝐴

�𝐽𝐽𝑚𝑚�𝜆𝜆𝑗𝑗𝑥𝑥��𝐴𝐴2
= 𝑇𝑇𝐵𝐵[𝜙𝜙](𝑗𝑗)

�𝐽𝐽𝑚𝑚�𝜆𝜆𝑗𝑗𝑥𝑥��𝐴𝐴2
 

4.3 Solving the whole equation 

Yet again, we have no trouble applying the transform to the original problem to get 

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) + 𝜆𝜆𝑗𝑗𝑇𝑇 [𝑞𝑞(⋅, 𝑡𝑡)](𝑗𝑗) = 0 

Which is a first order ODE in time, and then we get our complete solution, just as before, as 
presented in [08 Bessel RSP – Transform.pdf]. 
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5 Conclusion 

The transform method has a few clear and important benefits: 

1. We can solve PDEs as long as we know the eigenfunctions to the ‘more complicated’ 
portion of the PDE. For example, we knew the eigenfunctions for ℒ𝑞𝑞 = −𝑞𝑞𝑥𝑥𝑥𝑥 which solved 
the Heat Equation easily. The −𝑞𝑞𝑥𝑥𝑥𝑥 is what I call the ‘more complicated portion’ in the 
spatial parameter since we have otherwise a simple 1st order ODE in time. We can focus 
on the tougher portion first, and once we have solved it, the rest is trivial. 

2. The self-adjoincy issue is present in the Separation of Variables method too, and in that 
sense this method has no clear edge, except that here we can work using abstract 𝐸𝐸𝑗𝑗 first 

and realise that the problem is non-self-adjoint. In the separation of variables method, any 
eigenfunctions found (in closed form) have to be verified to be orthogonal, otherwise we 
may miss it out and wrongly assume to have found a solution. The Transform Method 
thus is less error-prone. 

3. We do not have to assume at the beginning in the Transform Method that the solution is 
of the form 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝐺𝐺(𝑡𝑡), like we have to do in Separation of Variables.  

It also has a few drawbacks, but rarely those that separation of variables does not also have: 

1. We still have to solve an S-L problem in the middle of the Transform Method, which is 
analogous to that in the Sep. of Vars. Method. Tedium has not been reduced in that 
portion. 

2. We have to find the correct inner product to use which will let the eigenfunctions be 
orthogonal to each other. This may well be a simple matter if we try the 𝐿𝐿2-inner product 
and it fits, or if we know beforehand that the Bessel functions of the first kind are A-inner 
product space orthogonal. But if we have no knowledge about the eigenfunctions we have 
found, it may be difficult to land upon the correct inner-product to use. One theory that 
professor Dave had is that we can find an inner product that allows us some kind of self-
adjoint relation e.g. �ℒ𝜙𝜙, 𝐸𝐸𝑗𝑗�𝐴𝐴 = �𝜙𝜙,ℒ𝐸𝐸𝑗𝑗�𝐴𝐴. That is again, a requirement-based guess and 

verify process (I may be wrong here) which is still not optimal in my opinion. 
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