
Dion Ho

Developing Mathematical Software for Efficient

Representation of Functions and Numerical Integration:

julia and ApproxFun

Dion Ho

February 11, 2019

Numerical integration, otherwise known as quadrature, denotes a set of algo-
rithms in which a definite integral is approximated, rather than determined exactly.
These algorithms are used when direct (exact) integration of the function is difficult
or impossible.

We experimented using the Newton-Cotes rules, Lagrange polynomial interpo-
lation, Chebyshev polynomial interpolation, and Taylor polynomial approximation,
to perform numerical integration. These algorithms approximate the integrand with
an approximation polynomial. The approximation polynomial is integrated (which
is trivially easy) to attain an approximation of the actual definite integral. While
the Newton-Cotes rules appear to bypass the formation of an approximation poly-
nomial, they are in fact equivalent to Lagrange polynomial interpolation (due to
theorem 1 which is elaborated below).

1 Polynomial Interpolation

With the exception of Taylor polynomial approximation, all the algorithms exper-
imented with use polynomial interpolation to create an interpolating polynomial
which is used as the approximation polynomial. In contrast, the Taylor polynomial
based algorithm performs a Taylor expansion at the midpoint of the integration
interval or spline (see §4 for an elaboration on splines). By definition, polynomial
interpolation creates an interpolating polynomial which intersects the actual func-
tion at specific points, called interpolation nodes.

Lagrange polynomial interpolation performs the interpolation by solving a sys-
tem of linear equations. For example, given 3 interpolation nodes: (1,3), (5,4), (2,0),
we can construct a second-order interpolating polynomial.

Let the interpolating polynomial be ax2+bx+c. Therefore, we have the following
system of linear equations:

1

Dion Ho

a(1)2 + b(1) + c = 3,

a(5)2 + b(5) + c = 4,

a(2)2 + b(2) + c = 0.

Solving the system of linear equations, we find a = 13
12 , b = −25

4 , c = 49
6 . There-

fore, the interpolating polynomial is 13
12x

2 + −25
4 x + 49

6 . Note that while there may
exist a third-order interpolating polynomial which intersects the integrand at the 3
nodes, interpolating polynomial generally refers to the interpolating polynomial of
the lowest possible order ; i.e. the interpolating polynomial which order is one less
than the number of nodes.

A method of solving the system of linear equations is to use matrices. With
reference to the system of linear equations above, let

V =

 1 1 1
25 5 1
4 2 1

 and Y =

3
4
0

 .

V is the Vandermonde matrix containing the coefficients of unknowns a, b, c, and Y
is the vector of y-values.

V −1Y =


13
12

−25
4

49
6


provides the values of the coefficients of the interpolating polynomial.

Theorem 1. For all natural numbers n ≥ 2, for all choices of n unique nodes, the
lowest order interpolating polynomial is unique.

Proof. Given any n ≥ 2 unique nodes: (x1, y1), (x2, y2) . . . , (xn, yn), we can form the
following system of linear equations:

an(x1)
n−1 + an−1(x1)

n−2 + . . .+ a1 = y1,

an(x2)
n−1 + an−1(x2)

n−2 + . . .+ a1 = y2,

... (1)

an(xn)n−1 + an−1(xn)n−2 + . . .+ a1 = yn. (2)

Therefore, we can form matrix V1 and vector Y1, each of which may be real or
complex valued,

V1 =


x1
n−1 x1

n−2 . . . 1
x2
n−1 x2

n−2 . . . 1
...

...
...

...
xn

n−1 xn
n−2 . . . 1

 and Y1 =


y1
y2
...
yn

 .

2

Dion Ho

V1
−1Y1 = (an an−1 . . . a1)

T where an, an−1, . . . , a1 are coefficients of an inter-
polating polynomial, P1.

Consider a second polynomial, P2, with coefficients bn, bn−1, . . . , b1, which inter-
sects the function at the same n nodes. The coefficients bn, bn−1, . . . , b1 must fulfil
the system of linear equations (2). Therefore, we can form matrix V2 and vector
Y2 where V2 = V1 and Y2 = Y1 and V2

−1Y2 = (bn bn−1 . . . b1)
T . That P1

and P2 are interpolating polynomials of the lowest order implies that V1 and V2
are square matrices. The inverse of a square matrix, if it exists, is unique. There-
fore, V −11 = V −12 , which implies that V −11 Y1 = V −12 Y2 which in turn implies that
P1 = P2.

The implication of theorem 1 is regardless of how the coefficients of the approxi-
mation polynomial are calculated (see §2) the resultant coefficients will be identical
if and only if the interpolation nodes are identical.

Therefore, all that differs between different polynomial interpolation methods is
the choice of interpolation nodes.

2 Choice of Interpolation Nodes

The intuitive choice of interpolation nodes is equispaced nodes. Standard Lagrange
polynomial interpolation uses equispaced nodes. Moreover, the Newton-Cotes rules
use equispace nodes (which is why they are equivalent to Lagrange polynomial in-
terpolation by Theorem 1).

Equispaced nodes however face the problem of the Runge phenomenon. The
Runge phenomenon is the phenomenon of an increase in the order of the interpo-
lating polynomial resulting in a decrease in the accuracy of the approximation. The
Runge phenomenon manifests as oscillations at the extreme ends of the interpolating
polynomial which deviate significantly from the actual function (see figure 1).

Trefethen [6] provides a solution to the Runge phenomenon: use the roots
of Jacobi polynomials as interpolation nodes. These nodes are clustered about
the extreme ends of the actual function (see figure 2). In particular, Trefethen
focuses on the Legendre and Chebyshev polynomials (special Jacobi polynomi-
als), he writes “[For] polynomial interpolation in Legendre or Chebyshev points,
‖f − pN‖ = O(constant−N) if f is analytic (for some constant greater than 1)”
(p. 264). This implies that the Runge phenomenon will not occur. Trefethen [6]
also provides an asymptotic description of the Lebesgue constant, ΛN , for equis-
paced, Legendre and Chebyshev nodes (a smaller Lebesgue constant indicates that
the nodes result in a better polynomial approximation).

Equispaced points: ΛN ∼ 2N/eN logN

Legendre points: ΛN ∼ const
√
N

Chebyshev points: ΛN ∼ const logN

3

Dion Ho

Figure 1: The red curve is the function to be approximated (Runge’s function). The
green curve is of higher order than the blue curve, yet it is a worse approximation due
to the oscillations at the extreme ends. Taken from https://commons.wikimedia.

org/wiki/File:Runge_phenomenon.svg.

4

https://commons.wikimedia.org/wiki/File:Runge_phenomenon.svg
https://commons.wikimedia.org/wiki/File:Runge_phenomenon.svg

Dion Ho

Figure 2: Chebyshev nodes are equally spaced around a semicircle. Notice how the
nodes cluster about the extreme ends on the x-axis. Taken from https://commons.

wikimedia.org/wiki/File:Chebyshev-nodes-by-projection.svg.

This indicates that amongst the three nodes distributions, Chebyshev nodes are
the best for polynomial approximation and equispaced nodes are the worst. In
addition, Teukolsky, Press, et al. [5] state: “The Chebyshev approximation is very
nearly the same polynomial as that holy grail of approximating polynomials [which
is] the minimax polynomial. [The minimax polynomial] (among all polynomials of
the same degree) has the smallest maximum deviation from the true function f(x).
The minimax polynomial is very difficult to find; the Chebyshev approximating
polynomial is almost identical and is very easy to compute!” (p. 192).

The roots of Chebyshev polynomials of the first kind, which are the Chebyshev
nodes, are extremely easy to compute as compared to the roots of other Jacobi
polynomials. For N ∈ N, the Chebyshev nodes x1, x2, . . . xN are given by the formula

xk = cos

(
2k − 1

2N
π

)
for k = 1, 2, . . . N. (3)

Chebyshev nodes for other intervals can be found through linear transformation.

5

https://commons.wikimedia.org/wiki/File:Chebyshev-nodes-by-projection.svg
https://commons.wikimedia.org/wiki/File:Chebyshev-nodes-by-projection.svg

Dion Ho

A Chebyshev polynomial approximation is of the form

gN (x) =

N∑
k=1

ckTk(x) where Tk is a Chebyshev polynomial of the first-kind.

If gN is a polynomial approximation of the function f , then we hope that, for an
appropriate definition of the limit of a function,

lim
N→∞

gN = f.

One possible definition for the limit of a function is the pointwise limit

∀x ∈ dom(f), lim
N→∞

gN (x) = f(x).

Teukolsky, Press, et al. [5] provide a formula to calculate the coefficients ck for
a Chebyshev polynomial approximation of function f :

ck =
2

N

N∑
k=1

f

[
cos

(
2k − 1

2N
π

)]
cos

(
2k − 1

2N
π

)
(4)

Though, given theorem 1, a system of linear equations can be solved with Chebyshev
nodes to attain the Chebyshev polynomial approximation. It is expected that the
specialised method (4) is more computationally efficient.

3 ApproxFun

There are two components of ApproxFun which are significant to this project: its
Chebyshev-based numerical integration algorithm, and its adaptive algorithm. Ap-
proxFun’s adaptive algorithm will be discussed in detail in §7.

ApproxFun uses Chebyshev zero points (given in equation 3) as its interpola-
tion nodes. There is a second variant of Chebyshev nodes called Chebyshev extreme
points, they will be elaborated upon in §7.1. To use ApproxFun to integrate function
f from y to z, one runs the code: Fun(f ,y..z). The output will be a Fun, which
represents the Chebyshev approximation polynomial, with n ∈ N number of coeffi-
cients specified in the Chebyshev space provided (y..z). The number of coefficients is
determined by ApproxFun’s adaptive algorithm; there should be enough coefficients
for the approximation to be machine precise (approximation error of around 10−15).

3.1 Re-expressing a Fun in Chebyshev space as a standard polyno-
mial

The polynomial produced by ApproxFun is in the form c0T0 + c1T1 + . . . where Ti
are Chebyshev polynomials of the first kind and c0, c1, . . . are the coefficients pro-
duced by ApproxFun from left to right. To re-express this polynomial as a standard

6

Dion Ho

polynomial, we first need to expand the Ti’s and second, transform the polynomial
into standard space [−1, 1]. For example, a Fun which specifies coefficients 1,2,3 in
Chebyshev space [0, 1] is equivalent to the polynomial 1+2(2x−1)+3(2(2x−1)2−1) =
2− 20x+ 24x2.

3.2 Manual Interpolation

To perform Chebyshev polynomial approximation but bypass the the adaptive al-
gorithm, one must first create the space by running the code: S = Chebyshev(y..z),
for an integration from y to z. Next, generate the Chebyshev nodes within space
S by running the code: points(S,n). This generates n ∈ N number of Cheby-
shev nodes. Values f1, f2 . . . , fn must be evaluated at each node. Create the array
v = [f1, f2, . . . , fn]. Finally, run the code: Fun(S,ApproxFun.transform(S,v)) to
generate the Fun with n number of coefficients (equal to the number of Chebyshev
nodes generated).

The wrapper function mcheb which we coded allows for more convenient Chebyshev-
based numerical integration with manual interpolation (details in §5.1). Further
information on ApproxFun, as well as the download link, can be found at
https://github.com/JuliaApproximation/ApproxFun.jl.

4 Splines, Composition, and Accuracy

There are two main methods by which the accuracy of a polynomial approximation
can be improved. The first method is to increase the order of the approximating
polynomial (though the Runge phenomenon may be a concern). The second method
is to use splines.

Taken from Wouter Den Haan [3]: “The idea about splines is to split up the
domain into different regions and to use a different polynomial for each region. This
would be a good strategy if, the function can only be approximated well with a
polynomial of a very high order over the entire domain, but can be approximated
well with a sequence of low-order polynomials for different parts of the domain.” (p.
vii). The strategy detailed by Wouter Den Haan is called composition.

7

https://github.com/JuliaApproximation/ApproxFun.jl

Dion Ho

4.1 Composite Newton-Cotes rules

Definition 2. The four basic Newton-Cotes rules are:

Trapezoidal rule:

∫ a

b
f(x) dx ≈ a− b

2
(fa + fb).

Simpson’s rule:

∫ a

b
f(x) dx ≈ a− b

3
(fa + 4fc + fb).

Simpson’s
3

8
rule:

∫ a

b
f(x) dx ≈ 3(a− b)

8
(fa + 3fc + 3fd + fb).

Boole’s rule:

∫ a

b
f(x) dx ≈ 2(a− b)

45
(7fa + 32fc + 12fd + 32fe + 7fb). [4]

Given identical nodes, the use of these rules to perform numerical integration is
more computationally efficient than the use of standard Lagrange interpolation. The
problem with the use of the Newton-Cotes rules is that the number of interpolation
nodes each rule uses is fixed to 2, 3, 4, 5 respectively. Therefore, the only way to use
the Newton-Cotes rules to approximate a complicated integrand to high accuracy is
to perform composition, which results in the Composite Newton-Cotes rules.

Definition 3. Let n ∈ N denote the number of divisions of the integration interval
[b, a]. If there are n divisions, then the integration interval is divided equally into
intervals (splines) [b, xk], [xk, x2k], . . . , [xkn−k, xkn], [xkn, a], where ∀i ∈ N0, i ≤ kn+
k,

xi = b+

(
i

k

)(
a− b
n+ 1

)
and

k is the number of function evaluations in the rule minus one (e.g. for Simpson’s
rule, k = 2) which is constant for each rule. It is evident that x0 = b and xkn+k = a.
It is possible for the splines to be of different sizes, though that possibility is not
accounted for in this definition.

Using definitions 2 and 3, the four composite Newton-Cotes rules for n divisions
can be derived for all n ∈ N. For simplicity, f(xi) will be denoted fi instead of
fxi . Each composite rule will be stated in two forms. The first form is simply a
summation all the splines. The second form is a simplification of the first such that
fewer function evaluations are needed in total, which results in greater computational
efficiency.

1. Composite Trapezoidal rule:∫ a

b
f(x) dx ≈ a− b

2
(fa + fb)

=

n+1∑
i=1

xi − xi−1
2

(fi + fi−1). (5)

8

Dion Ho

For example, if n = 3, then∫ a

b
f(x) dx ≈x1 − b

2
(f1 + fb) +

x2 − x1
2

(f2 + f1) +
x3 − x2

2
(f3 + f2)

+
a− x3

2
(fa + f3).

An equivalent form is∫ a

b
f(x) dx ≈ x1 − b

2
(fb) +

n∑
i=1

xi+1 − xi−1
2

(fi) +
a− xn

2
(fa). (6)

If the integration interval [b, a] is divided equally, then the length of each spline
is constant. Therefore, we can let the length of each spline be denoted h such
that ∀i ∈ N0, h = xi+1 − xi.

Substituting h = xi+1 − xi into equations 5 and 6,

(5) :

∫ a

b
f(x) dx ≈ h

2

n+1∑
i=1

(fi + fi−1) and

(6) :

∫ a

b
f(x) dx ≈ h

2
(fb) + h

n∑
i=1

(fi) +
h

2
(fa).

2. Composite Simpson’s rule:∫ a

b
f(x) dx ≈ a− b

3
(fa + 4fc + fb)

=
n+1∑
i=1

x2i − x2i−2
3

(f2i + 4f2i−1 + f2i−2). (7)

Equivalently, ∫ a

b
f(x) dx ≈x2 − b

3
(fb) +

4

3

n+1∑
i=1

(x2i − x2i−2)(f2i−1)

+
1

3

n∑
i=1

(x2i+2 − x2i−2)(f2i) +
a− x2n

3
(fa). (8)

If the division is equal, then let h = x2i+2 − x2i. Therefore,

(7) :

∫ a

b
f(x) dx ≈ h

3

n+1∑
i=1

(f2i + 4f2i−1 + f2i−2) and

(8) :

∫ a

b
f(x) dx ≈ h

3
(fb) +

4h

3

n+1∑
i=1

(f2i−1) +
2h

3

n∑
i=1

(f2i) +
h

3
(fa).

9

Dion Ho

3. Composite Simpson’s 3
8 rule:∫ a

b
f(x) dx ≈ 3(a− b)

8
(fa + 3fc + 3fd + fb)

=
n+1∑
i=1

3(x3i − x3i−3)
8

(f3i + 3f3i−1 + 3f3i−2 + f3i−3). (9)

Equivalently,∫ a

b
f(x) dx ≈3(x3 − b)

8
(fb) +

9

8

n+1∑
i=1

(x3i − x3i−3)(f3i−1 + f3i−2)

+
3

8

n∑
i=1

(x3i+3 − x3i−3)(f3i) +
3(a− x3n)

8
(fa). (10)

If the division is equal, then let h = x3i+3 − x3i. Therefore,

(9) :

∫ a

b
f(x) dx ≈ 3h

8

n+1∑
i=1

(f3i + 3f3i−1 + 3f3i−2 + f3i−3) and

(10) :

∫ a

b
f(x) dx ≈ 3h

8
(fb) +

9h

8

n+1∑
i=1

(f3i−1 + f3i−2) +
3h

4

n∑
i=1

(f3i) +
3h

8
(fa).

4. Composite Boole’s rule:∫ a

b
f(x) dx ≈ 2(a− b)

45
(7fa + 32fc + 12fd + 32fe + 7fb)

=

n+1∑
i=1

2(x4i − x4i−4)
45

(7f4i + 32f4i−1 + 12f4i−2 + 32f4i−3 + 7f4i−4).

(11)

Equivalently,∫ a

b
f(x) dx ≈14(x4 − b)

45
(fb) +

8

45

n+1∑
i=1

(x4i − x4i−4)(8f4i−1 + 3f4i−2 + 8f4i−3)

+
14

45

n∑
i=1

(x4i+4 − x4i−4)(f4i) +
14(a− x4n)

45
(fa). (12)

10

Dion Ho

If the division is equal, then let h = x4i+4 − x4i. Therefore,

(11) :

∫ a

b
f(x) dx ≈ 2h

45

n+1∑
i=1

(7f4i + 32f4i−1 + 12f4i−2 + 32f4i−3 + 7f4i−4) and

(12) :

∫ a

b
f(x) dx ≈ 14h

45
(fb) +

8h

45

n+1∑
i=1

(8f4i−1 + 3f4i−2 + 8f4i−3)

+
28h

45

n∑
i=1

(f4i) +
14h

45
(fa).

The total number of function evaluations in the second form of each composite
rule, E, is given by the formula E = (k+ 1)(n+ 1)−n = kn+ k+ 1 = k(n+ 1) + 1.

The second form of each composite Newton-Cotes rule has been implemented in
the numerical integration algorithms we coded (see §5).

4.2 Relationships between the number of splines and the accuracy
of the numerical integration

Splines can also be used to improve the accuracy of other numerical integration
algorithms. In fact, splines double-up as a solution to the Runge phenomenon. We
investigated the relationship between the number of splines used and the accuracy of
the numerical integration for Newton-Cotes rules, Taylor polynomial, and Chebyshev
polynomial based algorithms. We discovered that for some functions, Newton-Cotes
rules and Taylor polynomial based algorithms demonstrate the relationship

E =
ea

nb
⇔ log(E) = a+ b log(n), (13)

where a is a constant, n is the number of splines, b is the number of function evalua-
tions (or one more than the order of the Taylor polynomial), and E is the error of the
numerical integration defined by E = |actual value− numerical integration value|.

We have named each of our graphs “[function denotation][r value in function][algorithm
denotation]”. The first function we experimented with is

s[r] : sin(10rx).

The algorithms are denoted “tay[ω]” for Taylor polynomial with order ω (if no
number is specified, order is 15 by default), “b” denotes Boole’s rule, “s38” denotes
Simpson’s 3

8 rule, and “s” denotes Simpson’s rule. As an example, the graph “s2s38”
denotes that the function sin(102x) and Simpson’s 3

8 rule were used.
Figure 3 shows the graph named “s2s38”. Apart from a few data points to the

extreme left, the graph appears to adhere strictly to relationship (13); we performed
linear regression using RStudio and found a p-value which is smaller than machine
precision, and an adjusted R-squared value of 0.9985. In addition, we found that
a = 3.96 and b = 4. Figure 4 shows the another graph named “s5tay11”, for which
a = 102 and b = 12.

11

Dion Ho

Figure 3: The function sin(102x) and Simpson’s 3
8 rule were used. a = 3.96 and

b = 4.

Figure 4: The function sin(105x) and a Taylor polynomial with order 11 were used.
a = 102 and b = 12.

12

Dion Ho

Name of graph b (nearest integer) a (3s.f.)

s1s 4 -8.74

s1s38 4 -9.55

s1b 6 -15.2

s2s 4 3.96

s2s38 4 3.96

s2b 6 6.57

s3s 4 11.9

s3s38 4 10.9

s3b 6 19.3

s4s 4 20.2

s4s38 4 19.2

s4b 6 33.1

s4tay 16 97.3

s5b 6 46.3

s5tay 16 131

Table 1: a and b values for relationship (13)

Table 1 shows the values of b and a for functions s[r]. As expected, the b values
equal the number of function evaluations in the algorithm (or one more than the
order of the Taylor polynomial). The a values tend to be larger as the function
becomes more oscillatory (r is larger). In fact, for each algorithm, the a value
increases linearly as r in sin(10rx) increases. Figure 5 shows the linear relationship
between a and r, with gradient equal to 15.0 (3s.f.). The linear relationship and
relationship (13) are significant as given a single data point (a, r), they allow us to
estimate the number of splines, n, such that error, E ≤ T for any T ∈ R+, for any
non-zero real number r where sin(10rx) is the function to be numerically integrated
with respect to x.

Unfortunately, these relationships break down as the function to be numerically
integrated becomes more complicated: the pattern of oscillation shows greater vari-
ation. For the function

ss[r]: sin

(
10rx+

sin(10rx)

10

)
,

the relationships still hold, albeit with more discrepancies. Figure 6 shows that
relationship (13) holds firmly for error less than approximately e−14. In fact, when
error is small, the linear relationship between a and r holds firmly as well. Yet,
bewteen figure 3 and figure 6, the latter has a significantly larger percentage of data
points which do not adhere to relationship (13).

13

Dion Ho

Figure 5: The linear relationship between constant a and r in sin(10rx). Gradient
is equal to 15.0 (3s.f.).

Figure 6: The function sin
(

102x+ sin(102x)
10

)
and Simpson’s 3

8 rule were used. a =

4.02 and b = 4.

14

Dion Ho

Figure 7: Graph of the function s[r] for r = 1, 2.

The function

am[r]: sin

(
x

(x− 0.5)2 + 0.1r

)
is much more complicated than previous functions because its behaviour ranges from
that of sin(4x) at x = 0 or x = 1 to that of sin(10rx) at x = 0.5. When we used
the function “am[r]”, relationship (13) no longer held for some numerical integration
algorithms as demonstrated in figure 12. Notably, for some numerical integration
algorithms, for sufficiently small values of r, for extremely small error values, the
data points still adhere to relationship (13). This is shown in figure 13. Nonetheless,
we cannot reliably estimate the number of splines necessary to bring the error below
a certain value unless prior testing has shown that relationship (13) and the linear
relationship between a and r hold for the function to be numerically integrated.

The figures 7, 8, 9 show the graphs for s[r], ss[r], am[r] respectively for r = 1, 2.
Figure 10 shows all of the graphs together. For larger values of r the graph is barely
visible. For example, figure 11 shows the graphs for ss[r] and am[r] for r = 3.

When we used Chebyshev polynomial based algorithms, relationship (13) did
not hold for every function experimented with. Figure 14 shows the results from
experimentation with function sin(102x) and Chebyshev polynomial approximations
with order 15.

4.3 Conclusion on the use of splines and on Taylor polynomial
based algorithms

Our experimentation with the various numerical integration algorithms led us to two
conclusions. First, we decided to dismiss the use of Taylor polynomials for numerical
integration for two reasons.

15

Dion Ho

Figure 8: Graph of the function ss[r] for r = 1, 2.

Figure 9: Graph of the function am[r] for r = 1, 2.

16

Dion Ho

Figure 10: Graphs of the functions s[r], ss[r], am[r] for r = 1, 2.

Figure 11: Graphs of the functions ss[r], am[r] for r = 3.

17

Dion Ho

Figure 12: The function sin
(

x
(x−0.5)2+0.13

)
and Boole’s rule were used. The graph

is no longer linear.

Figure 13: The function sin
(

x
(x−0.5)2+0.12

)
and Simpson’s 3

8 rule were used. The

graph is mostly non-linear.

18

Dion Ho

Figure 14: The function sin(102x) and a Chebyshev polynomial approximation with
order 15 were used. The graph is non-linear.

With reference again to table 1, notice that when Taylor polynomial based algo-
rithms are used, the value of a is massive. This manifests as a massive error when
the number of splines is small. With reference to figure 4, the error is approximately
e60 when no composition is performed. Graphically, this is because, outside of a
small range from the point of Taylor expansion, a Taylor polynomial approximation
diverges significantly from the function; an example of such divergence is shown in
figure 15. Obviously, this is a problem for numerical integration.

Moreover, Taylor expansion relies upon differentiation, this is opposed to poly-
nomial interpolation which simply needs to evaluate the function. Differentiation is
much more computationally expensive than evaluation. Moreover, some functions
are finitely-differentiable or undifferentiable altogether. Therefore, polynomial in-
terpolation based algorithms are more versatile and more computationally efficient.

Our second conclusion is that the use of splines is an effective, and possibly
predictable, method of increasing the accuracy of a numerical integration. Unlike
our formation of splines by equal division of the integration interval, splines are
usually created by an adaptive algorithm. Also, the standard method to increase
the accuracy of a numerical integration is to increase the order of the approximating
polynomial. More research is required to compare these standard methods to our
methods involving the creation and use of splines.

19

Dion Ho

Figure 15: The Taylor polynomial approximation of order 7 diverges significantly
from the function for −π > x and π < x. The Taylor expansion is centred on the ori-
gin. Taken from https://commons.wikimedia.org/wiki/File:Taylorsine.svg.

20

https://commons.wikimedia.org/wiki/File:Taylorsine.svg

Dion Ho

5 Our algorithms and ApproxFun wrapper functions

We coded seven numerical integration algorithms in the Julia programming lan-
guage. Four of the algorithms: “trapezoid”, “simpson”, “simpson38”, “boole”, are
based on the Newton-Cotes rules. Their syntax is [algorithm](f ::function, y::number,
z::number, d::Int64) for integrate function f from y to z. d is an optional argument
for the number of divisions of the integration interval, which is one less than the
number of splines. If d is unspecified, d is set to 0 by default.

The algorithm “tayloridea” uses Taylor polynomials. Its syntax is
tayloridea(f ::function, y::number, z::number, n::Int64, d::Int64), where the addi-
tional argument n is the order of the approximating polynomial used in each spline.
For “tayloridea”, the highest value n can be is 15 due to limitations of code.

Finally, the last two algorithms are “fullm” and “linear”. “fullm” allows for any
interpolation nodes to be specified; Lagrange interpolation is performed with these
nodes. Be careful with the use of “fullm”, for not every distribution of interpolation
nodes will result in an approximating polynomial which convergences uniformly to
the function as the number of nodes approach infinity; the Runge phenomenon is one
example of divergence (see §2). “linear” performs standard Lagrange interpolation
(see §1 for more details). “linear” has identical syntax to “tayloridea”. “fullm”
requires an array argument which will be elaborated upon below.

Six of the seven algorithms are able to accept an array argument in lieu of
arguments y, z and d. “fullm” requires an array argument and has the syntax
fullm(f ::Function, y::Number, z::Number, C::Array). The array argument, usually
denoted C, demarcates the splines to be used in the numerical integration; for
“fullm”, C is an array of interpolation nodes. For the Newton-Cotes rules based
algorithms, the syntax for the use of an array argument is [algorithm](f ::function,
C::Array). As an example, the code simpson38(x → x2, 0, 1, 4) is equivalent to
simpson38(x → x2, [0, 0.2, 0.4, 0.6, 0.8, 1]). The use of array arguments is especially
important for contour integration (see §5.2).

5.1 Efficient use of ApproxFun and its wrapper functions

Two primary wrapper functions were coded for ApproxFun: “mcheb” and “com-
pletecheb”. “mcheb” syntax is mcheb(f ::function, y::number, z::number, n::Int64,
d::Int64), identical to that of “tayloridea”. “mcheb” bypasses ApproxFun’s in-built
adaptive algorithm. Therefore, if we know both the order of the Chebyshev ap-
proximation polynomial and the number of splines which are necessary to attain
the desired accuracy, “mcheb” is more computationally efficient than ApproxFun.
Examples of situations in which “mcheb” is more computationally efficient than
ApproxFun will be given below.

21

Dion Ho

Figure 16: Function “am4,5,6” (14) graphed in Desmos (https://www.desmos.com).

We will be using the following two functions:

am4,5,6:

2∑
r=0

sin

(
x− 2× r

(x− 2× r − 0.5)2 + 0.1r+4

)
(14)

am2,4,6:

2∑
r=0

sin

(
x− 2× r

(x− 2× r − 0.5)2 + 0.12r+2

)
. (15)

Figures 16 and 17 show the graph of the respective functions. These functions
consist of simple parts and highly oscillatory parts, each of which can be split up
to form splines. Attempting to numerically integrate the entire integration interval,
which is the method denoted “AdaptallN”, requires an approximating polynomial
with a massively high order. “AdaptallN” accuracy will be shown to be abyssmal
as the highest order polynomial ApproxFun’s adaptive algorithm can generate is a
polynomial of order 2097151, and even it could not attain the desired accuracy. On
the other hand, using the adaptive algorithm on every spline, which is the method
denoted “AdaptallC”, is computationally expensive.

Our solution is to re-use the approximating polynomial’s order and bypass the
adaptive algorithm when possible. Consider, for example, that we have three splines,
each of which contains a highly oscillatory part of the graph. Assume we require an
approximating polynomial of order 1000000, 1500000 and 2000000 to accurately ap-
proximate the respective splines. We can instead use an approximating polynomial of
order 2000000 to approximate each of the three splines and ensure we attain at least

22

https://www.desmos.com

Dion Ho

Figure 17: Function “am2,4,6” (15) graphed in Desmos (https://www.desmos.com).

the desired accuracy. Therefore, if there are splines which are similarly difficult to
numerically integrate, and we can identify the spline which is most difficult, or repre-
sentative of the difficulty, to numerically integrate, we can use the adaptive algorithm
on only that spline and re-use the approximating polynomial’s order to numerically
integrate similar splines. This idea underlies the wrapper function “completecheb”.
“completecheb” has the syntax completecheb(f ::Function,C::Array,A::Array, X).
Array C demarcates the splines to be used in the numerical integration. Array A
specifies the positions (from left to right) of the splines on which to use the adaptive
algorithm. X can be an array of the positions of the splines which approximating
polynomial’s order will be re-used for the remaining splines. If X is a multi-element
array, the average order of the approximating polynomials will be used. Alterna-
tively, X can be an integer to specify the order to be used for the approximating
polynomials. Two examples:

1. completecheb(f, [0, 0.5, 0.75, 1], [1], [4]) means the spline [0, 0.5] will be numer-
ically integrated with the use of the adaptive algorithm. The spline [0.75, 1]
will also be numerically integrated with the use of the adaptive algorithm,
moreover, the order of its approximating polynomial will be re-used to numer-
ically integrate the spline [0.5, 0.75]. The output is the sum of the numerical
integration of each spline.

2. completecheb(f, [0, 0.5, 0.75, 1], [1, 3], 100) means the splines [0, 0.5] and [0.75, 1]
will be numerically integrated with the use of the adaptive algorithm. The last

23

https://www.desmos.com

Dion Ho

Figure 18: The results of the comparison between “completecheb” and ApproxFun

spline [0.5, 0.75] will be numerically integrated using a Chebyshev polynomial
approximation with order 100. The output is the sum of the numerical inte-
gration of each spline.

One peripheral wrapper function we coded for ApproxFun is “adapt order”, it
outputs the order of the approximating polynomial generated by ApproxFun’s adap-
tive algorithm for a particular numerical integration. “adapt order” has the syntax
adapt order(f ::Function,y::Number, z::Number) for integrate function f from y to
z.

We tested “completecheb” against ApproxFun using the BenchmarkTools soft-
ware package in Julia (see https://github.com/JuliaCI/BenchmarkTools.jl for
software details and the download link). The results we attained is detailed in figure
18. The code we ran for the tests is detailed in figures 20 and ??. For function
“am4,5,6” (14), the highly oscillatory parts were similar, and the non-oscillatory
parts were also similar, therefore, “completecheb” performed entirely as expected.
For function “am2,4,6” (15), the highly oscillatory parts were sufficiently different
that it was better to use the adaptive algorithm for those splines.

5.2 Contour Integration

Suppose we wish to use numerical integration to approximate
∫
C

1
z dz, where z is a

complex variable and C is the upper half of the counterclockwise unit circle |z = 1|

24

https://github.com/JuliaCI/BenchmarkTools.jl

Dion Ho

Figure 19: Part 1 of the code we ran to test “completecheb” against ApproxFun.

Figure 20: Part 2 of the code we ran to test “completecheb” against ApproxFun.

25

Dion Ho

Exact value -3.141592654i

Chebyshev nodes -3.141610132i

Linear-spaced nodes -3.141878418i

Table 2: Results for line segment based contour integration with six nodes dis-
tributed about each line segment.

Figure 21: Contour, C, approximated by four line segments. Image is for illustration
purposes only, it is not drawn accurately.

such that Im(z) ≥ 0. This can be accomplished either by the use of line segments,
or by contour interpolation. We coded our algorithms to accomodate both methods.
The actual value of the integration is −π

2 i, where i is the imaginary constant.
We can approximate the contour, C, with line segments. Figure 21 shows C

approximated by four line segments. An array argument can be input into any of
the aforementioned algorithms or wrapper functions, with each line segment con-
sidered as one spline. An example of the code for the numerical integration is
mcheb(z → 1

z , [−1, x1, i, x3, 1], 5), where an order of five requires six interpolation
nodes. Table 2 shows the results for line segment based contour integration with six
nodes distributed about each line segment.

Alternatively, we can perform contour interpolation. If we take the Chebyshev
nodes on contour, C, as shown in figure 22, we can perform numerical integration
as usual. We can take linear-spaced nodes on C as well. While ApproxFun does
not support contour interpolation, we can use the algorithm “fullm” to perform La-
grange interpolation through the nodes and numerically integrate using a complex
Chebyshev approximation polynomial (see §5 for details on algorithm “fullm”, and
see §1 for details on Lagrange interpolation). Table 3 shows the results for con-

26

Dion Ho

Exact value -3.141592654i

Chebyshev nodes -3.085115443i

Linear-spaced nodes -3.158259736i

Table 3: Results for contour interpolation based integration with 24 nodes dis-
tributed about the integration interval.

Figure 22: Contour, C, with Chebyshev zero points (standard Chebyshev nodes)
distributed about it. Image is for illustration purposes only, it is not drawn accu-
rately.

tour interpolation based integration with 24 nodes distributed about the integration
interval.

Contrary to our expectations, the use of a mere four line segments produced sig-
nificantly more accurate results than contour interpolation based integration. Fur-
ther research can be done to explain the results attained. Nonetheless, we will use
line segments to perform numerical integration on a contour.

6 The time-dependent linear Schrodinger equation

The time-dependent linear Schrodinger equation is a complex partial differential
equation used to model quantum systems with wavefunctions which evolve with
time. We aim to plot the solution to the equation for a variety of initial conditions.

The problem is given as follows:

Partial Differential Equation, PDE: [∂t + i(−i∂x)2]q(x, t) = qt − iqxx = 0 (16)

Initial Condition, IC: q(x, 0) = q0(x) (17)

Boundary Condition, BC: qx(0, t) + βq(0, t) = h(t). (18)

From the PDE (16) and IC (17), we derived

Global Relation, GR: 0 = q̂0(−λ)− eiλ2τ q̂(−λ; τ)− F (−λ; 0)

27

Dion Ho

and, by applying Fokas method, the Ehrenpreis Form [2],

EF: 2πq(x, t) =

∫ ∞
−∞

eiλx−iλ
2tq̂0(λ) dx−

∫
∂D+

eiλx−iλ
2tF (λ; 0) dλ

where

∂D+ = −i(−∞, 0] ∪ [0,∞),

q̂0(λ) =

∫ ∞
0
e−iλxq0(x) dx, ∀λ ∈ clos(C−),

F (λ; 0) =

∫ τ

0
eiλ

2sqx(0, s) ds+ iλ

∫ τ

0
eiλ

2sq(0, s) ds ∀τ ∈ [t, T], ∀λ ∈ C.

We aim to re-express q(x, t) in terms of known quantities.

6.1 Obtain a formula for F (λ; 0)

F (λ; 0) =

∫ τ

0
eiλ

2sqx(0, s) ds+ iλ

∫ τ

0
eiλ

2sq(0, s) ds

We aim to re-express F (λ; 0) in terms of β, h, q0, τ and q̂(·; τ) by forming substitu-
tions for

∫ τ
0 e

iλ2sqx(0, s) ds and iλ
∫ τ
0 e

iλ2sq(0, s) ds denoted Qx and Q respectively.
Start by performing a time-transform of BC (18):∫ τ

0
eiλ

2sh(s) ds =

∫ τ

0
eiλ

2sqx(0, s) ds+ β

∫ τ

0
eiλ

2sq(0, s) ds (19)

Substitute −λ into F (λ; 0):

F (−λ; 0) =

∫ τ

0
ei(−λ)

2sqx(0, s) ds+ i(−λ)

∫ τ

0
ei(−λ)

2sq(0, s) ds

=⇒ F (−λ; 0) =

∫ τ

0
eiλ

2sqx(0, s) ds− iλ
∫ τ

0
eiλ

2sq(0, s) ds (20)

Form an equation for Q by taking (19) - (20):∫ τ

0
eiλ

2sh(s) ds− F (−λ; 0) = (β + iλ)

∫ τ

0
eiλ

2sq(0, s) ds

=⇒
∫ τ

0
eiλ

2sq(0, s) =
1

β + iλ

(∫ τ

0
eiλ

2sh(s) ds− F (−λ; 0)

)
(21)

=⇒ Q =
1

β + iλ

(∫ τ

0
eiλ

2sh(s) ds− F (−λ; 0)

)
Form an equation for Qx by substituting (21) into (20):∫ τ

0
eiλ

2sqx(0, s) ds =
iλ

β + iλ

(∫ τ

0
eiλ

2sh(s) ds− F (−λ; 0)

)
+ F (−λ; 0)

=⇒
∫ τ

0
eiλ

2sqx(0, s) ds =
iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β

β + iλ
F (−λ; 0) (22)

=⇒ Qx =
iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β

β + iλ
F (−λ; 0)

28

Dion Ho

Substitute (22) and (21) into F (λ; 0):

F (λ; 0) =
iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β

β + iλ
F (−λ; 0)

+
iλ

β + iλ

(∫ τ

0
eiλ

2sh(s) ds− F (−λ; 0)

)
=

2iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β − iλ
β + iλ

F (−λ; 0)

F (λ; 0) =
2iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β − iλ
β + iλ

(q̂0(−λ)− eiλ2τ q̂(−λ; τ)) (Using GR)

In terms of β, h, q0, τ and q̂(.; τ),

F (λ; 0) =
2iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β − iλ
β + iλ

q̂0(−λ)− β − iλ
β + iλ

(eiλ
2τ)q̂(−λ; τ)

6.2 Substitute F (λ; 0) into EF

EF: 2πq(x, t) =

∫ ∞
−∞

eiλx−iλ
2tq̂0(λ) dλ

−
∫
∂D+

eiλx−iλ
2t

(
2iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β − iλ
β + iλ

q̂0(−λ)− β − iλ
β + iλ

(eiλ
2τ)q̂(−λ; τ)

)
dλ

Focusing on the second term of EF,∫
∂D+

eiλx−iλ
2t

(
2iλ

β + iλ

∫ τ

0
eiλ

2sh(s) ds+
β − iλ
β + iλ

q̂0(−λ)− β − iλ
β + iλ

(eiλ
2τ)q̂(−λ; τ)

)
dλ

=

∫
∂D+

2iλ

β + iλ
(eiλx−iλ

2t)

∫ τ

0
eiλ

2sh(s) dsdλ

+

∫
∂D+

β − iλ
β + iλ

(eiλx−iλ
2t)q̂0(−λ) dλ

−
∫
∂D+

β − iλ
β + iλ

(eiλx−iλ
2t)(eiλ

2τ)q̂(−λ; τ) dλ

Therefore, EF:

2πq(x, t) =

∫ ∞
−∞

eiλx−iλ
2tq̂0(λ) dλ

+

∫
∂D+

2iλ

β + iλ
(eiλx−iλ

2t)

∫ τ

0
eiλ

2sh(s) ds dλ

+

∫
∂D+

β − iλ
β + iλ

(eiλx−iλ
2t)q̂0(−λ) dλ

−
∫
∂D+

β − iλ
β + iλ

(eiλx−iλ
2t)(eiλ

2τ)q̂(−λ; τ) dλ (23)

29

Dion Ho

With q(x, t) in this form, we will be able to plot it for various x, t, and initial
conditions q0.

6.3 Argue that terms in EF which depend explicitly upon q̂(·; τ)
can be replaced by other formulations.

In EF, the first three terms are known, they will be denoted K. Therefore, EF:

2πq(x, t) = K −
∫
∂D+

β − iλ
β + iλ

eiλx−iλ
2teiλ

2τ q̂(−λ; τ) dλ

We aim to show that

I(λ;x, t, τ) =

(∫
∂D+

β − iλ
β + iλ

eiλxeiλ
2(τ−t)q̂(−λ; τ) dλ

)
→ 0 as λ→∞ and

I(λ;x, t, τ) is analytic (defined) on all of clos(D+), given λ ∈ clos(C+).
EF is undefined when λ = iβ. Therefore, to ensure I(λ;x, t, τ) is analytic on all

of clos(D+), β must not be in the closed fourth quadrant. There are, however, two
exceptions to this restriction on β: β = 0 and β →∞ are both allowed.

If β = 0,
β − iλ
β + iλ

=
−iλ
iλ

= −1.

If β →∞, β − iλ
β + iλ

→ β

β
= 1.

To show that I(λ;x, t, τ) decays, we argue that since λ ∈ clos(C+) and x ∈ [0,∞),
Re(iλx) ≤ 0, eiλx = O(1). Furthermore, since λ2 ∈ {z ∈ C : Im(z) ≥ 0}, t ∈ [0, T]
and τ ∈ [t, T], (τ − t) ≥ 0 which implies that Re(iλ2(τ − t)) ≤ 0 which in turn
implies that eiλ

2(τ−t) = O(1). Next,

β − iλ
β + iλ

= −1 +
2β

β + iλ
=⇒ β − iλ

β + iλ
→ −1 as λ→∞.

We state without proof that q̂(−λ; τ) decays as λ becomes large. Therefore, I(λ;x, t, τ)→
0 as λ→∞, and if β < 0, then I(λ;x, t, τ) is analytic (defined) on all of clos(D+).
This statement can be proved using integration by parts and the generalised Riemann-
Lebesgue lemma [1]. The implication is that we can replace I(λ;x, t, τ) with 0 when
plotting q(x, t).

6.4 Types of initial conditions: function q0

We require the properties of every function q0 to the following:

1. {
q0(x) > 0 if 1 < x < 3

q0(x) = 0 otherwise.

30

Dion Ho

2. ∫ 3

1
q0(x) dx = 1.

The following are the four types of q0 we will use:
Discontinuous:

q0 =

{
0.5 if 1 < x < 3

0 otherwise.

Continuous but non-differentiable:

q0 =

{
−|x− 2|+ 1 if 1 < x < 3

0 otherwise.

Continuous and n-differentiable:

q0 =

{
a[(x− 1)(x− 3)]n+1 if 1 < x < 3

0 otherwise.

where a is the normalising constant such that a
∫ 3
1 q0 dx = 1.

Continuous and infinitely-differentiable (mollifier function):

q0 =

{
be
− 1

1−(x−2)2 if 1 < x < 3

0 otherwise.

where b is the normalising constant such that b
∫ 3
1 q0 dx = 1.

Constants a and b will be evaluated using numerical integration.

6.5 Determining the integration interval size for q(x, t)

One final obstacle we face in plotting the graph of the solution to the time-dependent
linear Schrodinger equation is that ApproxFun cannot perform numerical integration
for an infinitely-sized integration interval. Instead, we will have to use a sufficiently
large integration interval.

To decide on an integration interval which is sufficiently large, we calibrated
q(x, 0) based on its initial conditions. Our initial condition states that q(x, 0) =
q0(x). This implies that ∫ 3

1
q(x, 0) dx =

∫ 3

1
q0(x) dx = 1.

If we set the integration intervals within q(x, t) to [−m,m] and −i[−m, 0]∪[0,m],
we can code a loop to increase the value of m until∫ 3

1
q̃(x, 0) dx ≈ 1

31

Dion Ho

where

2πq̃(x, t) =

∫ m

−m
eiλx−iλ

2tq̂0(λ) dλ

+

∫
∂D+

m

2iλ

β + iλ
(eiλx−iλ

2t)

∫ τ

0
eiλ

2sh(s) ds dλ

+

∫
∂D+

m

β − iλ
β + iλ

(eiλx−iλ
2t)q̂0(−λ) dλ

−
∫
∂D+

m

β − iλ
β + iλ

(eiλx−iλ
2t)(eiλ

2τ)q̂(−λ; τ) dλ.

The following are the values of m we attained for the various types of q0 for an
arbitrary tolerance of 10−5:

Discontinuous: No value was attained as the limit of ApproxFun’s adaptive
algorithm was reached.

Continuous but non-differentiable: 67
Continuous and 1-differentiable: 69
Continuous and 4-differentiable: 21
Continuous and 7-differentiable: 18
Continuous and infinitely-differentiable (mollifier function): 52
We expected q(x, t) to be easier to approximate, in the sense that the m value

required for good accuracy is lower, as q0 became smoother. Therefore, we expected
the value of m to decrease as the function is differentiable more times. Our predic-
tions were mostly accurate. The one major anomaly is the mollifier function which
severely underperformed, for reasons yet unknown.

Nonetheless, with the values of m mostly acquired, we are ready to plot q(x, t).
The syntax for q(x, t) is q(x::Number, t::Number, m::Number, q0k::Int64, a::Number,
n::Int64) where both a and n are optional arguments. The purpose of arguments x,
t and m should be evident. Argument q0k indicates which initial condition function,
q0, to use:

q0k = 1 =⇒ use the discontinuous function for q0

q0k = 2 =⇒ use the continuous but non-differentiable function for q0

q0k = 3 =⇒ use the continuous and n-differentiable for q0

q0k = 4 =⇒ use the mollifier function for q0.

Argument n is relevant only if q0k = 3; it specifies the number of times q0 can be
differentiated. If q0k = 3 but n is unspecified, n = 1 by default. Argument a is the
normalising constant which ensures a

∫ 3
1 q0 dx = 1. If a is unspecified, the algorithm

will automatically calculate the value of a based on the function q0 specified, which
will increase computation time.

32

Dion Ho

6.6 Graphs of the solution to the time-dependent linear Schrodinger
equation

The solution to the time-dependent linear Schrodinger equation is the wave function,
q(x, t). |q(x, t)|2 is a probability distribution which models the probability of finding
the particle at position x, at time t. We will plot |q(x, t)|2 with β = 0 and h(s) = 0
(see 23), which implies that the total energy in the quantum system is conserved.
The basic properties we expect from our plot is for the initial peak to flatten and
spread out. We also expect to see a waveform with frequency which decreases
over time, since there is finite energy in the system (especially since total energy is
conserved) and that energy is being spread over an increasing range of values of x.
Figures 23, 24 and 25 show the graphs of |q(x, t)|2 for q0 is the mollifer function,
7-differentiable, and non-differentiable respectively. All three graphs have x ∈ [0, 10]
for various t values.

The graphs demonstrate the properties we expected of them. Therefore, we
believe our algorithm for q(x, t), together with the algorithm “completecheb” which
it relies on, are successful.

7 ApproxFun’s adaptive algorithm

ApproxFun’s adaptive algorithm runs a four-step process:

1. A Fun is generated which represents the Chebyshev approximation polynomial.

2. The accuracy of the Fun is estimated, if its accuracy is less than a threshold,
redo step 1 but with a higher order approximating polynomial. Otherwise,
proceed to step 3.

3. Shave off some coefficients from the Fun.

4. Output the Fun.

The adaptive algorithm increases the number of coefficients (order plus one) in
the approximating polynomial by a scale factor of two each time, starting from 16. If
the Fun with 16 coefficients is insufficiently accurate, it is discarded and a Fun with
32 coefficients is generated next, if necessary, a Fun with 64 coefficients is generated
after that and so on. If a Fun with 220 coefficients is still insufficiently accurate,
ApproxFun will simply output a Fun with 221 coefficients. Therefore, if ApproxFun
displays the warning “Maximum number of coefficients 1048577 reached in con-
structing Fun”, one should check the accuracy of the output Fun, for ApproxFun
did not.

We currently do not understand the algorithms by which the accuracy of the Fun
is estimated, and the number of coefficients to shave off is determined. Nonetheless,
it is clear that steps 1 and 2 comprise the majority of the adaptive algorithm’s
runtime as many Funs are generated, tested, and for all but one Fun, discarded.

33

Dion Ho

It is possible to optimise the loop between these two steps by re-using function
evaluations from a discarded Fun for the next Fun. This is what we aim to do.

7.1 Re-use of function values

We restate the formula (3) to generate the Chebyshev nodes, x1, x2, . . . , xN :

xk = cos

(
2k − 1

2N
π

)
for k = 1, 2, . . . N.

Notice that ∀k ∈ N, k ≤ N , 2k − 1 is odd. Consider b(2k−1)
b(2N) for some b ∈ N. If we

let Nb = M , then b(2k−1)
b(2N) = b(2k−1)

2M . Realise that if b is odd, then b(2k − 1) is also
odd, and

xk = cos

(
2j − 1

2M
π

)
for j = 1, 2, . . .M,

such that ∀k, ∃j : 2j − 1 = b(2k − 1). The implication is that for any b ∈ N : b
is odd, a distribution of N Chebyshev nodes and a distribution of Nb Chebyshev
nodes will have all N Chebyshev nodes coincide with a node in the distributon of Nb
Chebyshev nodes. Since we need to evaluate the function at all N Chebyshev nodes
to create a Chebyshev polynomial approximation with N coefficients (see 3.2), if
we then wish to create a Chebyshev polynomial approximation with Nb coefficients,
we can re-use all N function evaluations which would save us up to 100

b percent of
computation time.

In fact, there exists a second variant of Chebyshev nodes called “Chebyshev
extreme points” [6], as opposed to the standard “Chebyshev zero points” which
ApproxFun uses. The formula to generate Chebyshev extreme points, x1, x2, . . . xN ,
is:

xk = cos

(
k

N
π

)
for k = 0, 1, . . . N.

The significance of Chebyshev extreme points is that, with them, we can re-use all
N function evaluations to create a Chebyshev polynomial approximation with Nc
coefficients where c ∈ N : c is even. Therefore, we can re-use even more function
evaluations and save more computation time.

We implemented our “re-use of function values” idea in ApproxFun’s “construc-
tor.jl” file which contains the code for its adaptive algorithm. One significant change
we made was to remove the scale factor of two between steps 1 and 2, for that pre-
vented function evaluations from being re-used; we left ApproxFun to continue using
Chebyshev zero points. Instead, we made the adaptive algorithm loop through the
following sequence of integers for number of coefficients in the Fun:

(16, 32, 80, 128, 240, 512, 1200, 2048, 3600, 8192, 18000,

32768, 54000, 131072, 270000, 524288, 810000).

34

Dion Ho

If a Fun with 810000 coefficients is still insufficiently accurate, the edited ApproxFun
will output a Fun with 2430000 coefficients. Other details of our improvements are
omitted from this report.

Tests of the edited ApproxFun indicate the “re-use of function values” code
improvements do speed up ApproxFun’s adaptive algorithm. Figure 26 shows the
results of our tests. Note that “Median Pure Time using logn”, highlighted in green,
are the results for our tests on step 1 of the adaptive algorithm alone; figure 27
shows the code we ran to generate these results. “Median ApproxFun Time” are
the results for our tests on ApproxFun as a whole. The two sets of results should
be similar, but they are not. In fact, there are numerous anomalies in the results
which we cannot yet explain (details omitted from this report). Significantly more
testing and research is necessary, especially since there are important lines of code
in ApproxFun’s adaptive algorithm which we have yet to understand. Nonetheless,
we consider our “re-use of function values” code improvements to ApproxFun to be
promising.

Acknowledgments

I will like to thank my project supervisor, Professor David Smith, for his invaluable
help and support.

References

[1] M. J. Ablowitz and A. S. Fokas, Complex variables, Cambridge Texts in Applied
Mathematics, Cambridge University Press, 1997.

[2] A. S. Fokas, A unified approach to boundary value problems, CBMS-SIAM, 2008.

[3] Wouter Den Haan, http://econ.lse.ac.uk/staff/wdenhaan/numerical/, filename:
functionapproximation.pdf, last modified: 2011-08-29 16:02.

[4] J.H. Mathews and K.D. Fink, Numerical methods using matlab, Featured Titles
for Numerical Analysis Series.

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery, Numerical recipes in c (2nd ed.): The art of scientific computing, pp. 190–
195, Cambridge University Press, New York, NY, USA, 1992.

[6] L.N. Trefethen, Finite difference and spectral methods for ordinary and partial
differential equations, pp. 260–268, The author, 1996.

35

Dion Ho

Figure 23: Plot of |q(x, t)|2 for q0 is the mollifer function, for x ∈ [0, 10], for various
t values.

36

Dion Ho

Figure 24: Plot of |q(x, t)|2 for q0 is 7-differentiable, for x ∈ [0, 10], for various t
values.

37

Dion Ho

Figure 25: Plot of |q(x, t)|2 for q0 is non-differentiable, for x ∈ [0, 10], for various t
values.

Figure 26: Results of the comparison between the edited ApproxFun (which re-uses
function evaluations) against the original ApproxFun (which does not re-use function
evaluations).

38

Dion Ho

Figure 27: Code by which the results for “Median Pure Time using logn” (shown in
figure 26) were generated.

39

	Polynomial Interpolation
	Choice of Interpolation Nodes
	ApproxFun
	Re-expressing a Fun in Chebyshev space as a standard polynomial
	Manual Interpolation

	Splines, Composition, and Accuracy
	Composite Newton-Cotes rules
	Relationships between the number of splines and the accuracy of the numerical integration
	Conclusion on the use of splines and on Taylor polynomial based algorithms

	Our algorithms and ApproxFun wrapper functions
	Efficient use of ApproxFun and its wrapper functions
	Contour Integration

	The time-dependent linear Schrodinger equation
	Obtain a formula for F(;0)
	Substitute F(;0) into EF
	Argue that terms in EF which depend explicitly upon (;) can be replaced by other formulations.
	Types of initial conditions: function q0
	Determining the integration interval size for q(x,t)
	Graphs of the solution to the time-dependent linear Schrodinger equation

	ApproxFun's adaptive algorithm
	Re-use of function values

