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The Schrodinger Equation

6 The time-dependent linear Schrodinger equation

The time-dependent linear Schrodinger equation is a complex partial differential
equation used to model quantum systems with wavefunctions which change with
time.

The problem is given as follows:

Partial Differential Equation, PDE: [0; + i(—i0y)%]q(z,t) = ¢ — igzz = 0
Initial Condition, IC: q(z,0) = go(z)
Boundary Condition, BC: ¢,(0,t) + 8¢(0,t) = h(?).

Solving this equation requires computing the wavefunction:
¥(x,t), though we denoted it q(x,t) instead.
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Formula for the wavefunction

The wavefunction
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Direct (Symbolic) Integration

b fxcx:52+C
> [sin(x)dx = —cos(x) + C
e fxe dx = xe* +fe dx =xe*+e&* + C

> S dx = (7 — %) dx = loglx 1| —log x|+ C
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Direct Integration vs Numerical Integration

* Direct integration produces EXACT VALUES.

b fxcx:52+C
> [sin(x)dx = —cos(x) + C
e fxe dx = xe* +fe dx =xe*+e&* + C

> S dx = (7 — %) dx = loglx 1| —log x|+ C

* Numerical integration produces APPROXIMATIONS.
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The Problem with Direct Integration

Direct integration is not feasible, or even possible, for every
function.

> [+/tan(x) dx

B fexzdx
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Integration as Area Under the Curve

Graph of e x"2
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Newton-Cotes Rules

Graph of e”x2

» Trapezoidal rule:

» Simpson’s rule:

2 —b
/ f(x)dx ~ 2 T (fa 41+ )
Jb

» Simpson's % rule:

2 3(a—b
[ oo ax~ 2222 h 3+ 35+ )
Jb

> Boole's rule: f, denotes f(a).

d 2(a—0b
b
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Polynomial Approximation

/ f(x)dx =
b
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Taylor Polynomial Approximation

Taylor series expansion of f(x) at number a:

f'(a)
1

f"(a)

f(x)=f(a)+ o

(x —a)’ +...

(x —a)+

Truncation

For example:
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Taylor Polynomial Approximation (example)
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Taylor Polynomial Approximation (example)

» Actual value: f_llexz dx =2.925...
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Polynomial Interpolation

* Given a set of nodes, called interpolation nodes, which lie on the
function to be approximated, a polynomial which intersects all the

nodes will likely be a good approximation.
* The polynomial is formed by solving a system of linear equations.
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Polynomial Interpolation

200 nodes for a highly
oscillatory function
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Choice of Distribution of Interpolation Nodes
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200 equi-spaced nodes: x =-100, -99, -98, ..., 100

* Equi-spaced nodes result in a relatively poor polynomial
approximation due to the Runge Phenomenon.

* The use of Chebyshev nodes averts the Runge Phenomenon and
results in a better approximation.
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Chebyshev Nodes

The nodes shown are
Chebyshev nodes;
they cluster about the
extreme ends of the
graph.

The Runge
Phenomenon
manifests as
oscillations at the
extreme ends.

1
-0.2 0

Graph taken from
https.//math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab _11/html/lab 11.html
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https://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab_11/html/lab_11.html

Numerical Integration: The many considerations

Polynomial Approximation

Taylor Polynomial Polynomial Interpolation
Approximation

Choice of Interpolation

777777777777777777777777777777777777777777 Nodes
The use of splines to / \
increase accuracy of the Equi-spaced Chebyshev
| numerical integration |
nodes nodes

' Newton-Cotes }
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Splines and Composition

Splines

Graph of e x"2 / \

50 —

* The summation of
multiple splines is
called composition.

40 =

30 —

* The greater the
number of splines
used, the more
accurate the
numerical integration.
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My Work

& Quadrature functionsjl — Di\Personal\student-approxfun\julia files — Atom

File Edit View Julia Selection Find Packages Help
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maximum time:
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Formula for the wavefunction
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The time-dependent linear Schrodinger equation simply
serves as a litmus test for our algorithm!
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The Algorithm

ApproxFun (Chebyshev nodes) but with some wrapper functions
coded around it for increased efficiency and to gear ApproxFun
to perform numerical contour integration.

ApproxFun,jl

ApproxFun is a package for approximating functions. It is in a similar vein to the Matlab package chebfun and the

Mathematica package RHPackage .
The ApproxFun Documentation contains detailed information, or read on for a brief overview of the package.

The ApproxFun Examples contains many examples of using this package, in Jupyter notebooks and Julia scripts.

These are |
Introduction

CO nto u rS O n TIJ;lﬁNo favourite functions on an interval and create approximations to them as simply as:
Col I l p I eX p I a n@ LinearAlgebra, SpecialFunctions, Plots, ApproxFun
L]
LS

= Fun(identity,@..18)
Fie i =inlat2)
g = cos(x)

Evaluating f(.1) will return a high accuracy approximation to sin¢e.e1) . All the algebraic manipulations of functions are
supported and more. For example, we can add f and g~2 together and compute the roots and extrema:

hi=:f gt
r = roots(h)
rp = roots(h')
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The Four Types of Initial Condition

. Continuous but non-
Non-continuous

differentiable
lq(x,t)|*2 for t=0.0 B lq(x,t)|*2 for t=0.0
Continuous and n- Continuous and infinitely
differentiable differentiable (mollifier)
lg(x.t)|*2 for t=0.0 ) lq(x.t)|*2 for t=0.0
i
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The Probability Density Function

We plotted |q(x,t)["2 which is a probability density function
telling us the probability of finding the quantum particle in a

region of x - values.
|q(x,t)|*2 for t=0.0

1.0 —

0.8 - -

08 - The particle has a 100%

chance of existing within
4 / this region.

02

0.0 1 el L ® I 1 1
0.0 25 50 7.5 10.0
X
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The Four Types of Initial Condition

Continuous but non-

Non-continuous

differentiable
lq(x,t)|*2 for t=0.0 o lq(x,t)|*2 for t=0.0
Graphs are
inaccurate
Continuous and n- Continuous and infinitely
differentiable differentiable (mollifier)
lg(x.t)|*2 for t=0.0 ) lq(x.t)|*2 for t=0.0
i

YaleNUSCollege




lq(x,t)|*2 for t=0.0

luls. Plots
Wy X @ + - =
0002 for t=0.0 Iq(x.)|A2 for t=0.0
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Other Potential Applications of this Algorithm

* Many problems require numerical integration, but the numerical
integration algorithm best suited to each problem may be different.

* This algorithm can be used to help solve problems on heat flow. Toh Wei
Yang’s project dealt with the heat equation, which models heat flow:

Heat Equation with Dynamic Boundary Condition Reduces to

Fractional Linear Ordinary Differential Equation

Abstract

The heat equation is a partial differential equation that describes how heat is distributed
in a region over time. In this project, we seek to solve the heat equation on the half line
where the boundary condition at one end evolves with time using the Fokas method.
We show that the problem reduces to a fractional inear ordinary differential equation
(FLODE) with a variable coefficient. Drawing from ideas in fractional calculus, we obtain
a solution to the FLODE through the Frobenius method, thus solving the heat equation.

Introduction
pith dynamic boundary condition
. (@0 € 0,00) x (0,7),
or,0)=a), 7€)
40,0+ f0a0.0 =0, teT],

where T s a positive constant.
Through the Fokas method, we find the solution to be given by
2ng(e 7,,/ R S R T [0

where . .
PO = [ 0 dsvin [ oo,

and D* = A€ C*: ROV <0}

Our goal is to express this solution n terms of known data. Through a process known
a5 Dirchlet-to-Neumann Map, we arc able o express the solufion solly in terms of one
boundary value, and reduce the problem to simply solving for that boundary value. We
have effectively reduced the problem to solving just for q(0,s) in

/T = [T~ 00,0 ds @

Fractional Integral and Fractional Derivative
Definition 1. For 0 < a < 1, the Liouvilleleft-sided fractional integral on R s defined s
o -
(129)(x) Hu,\/

Definition 2. For0 < a < 1, the Caputo derivative is defined as
(©D%y)(x) = (17" Dy)(x) @

= o

where D = &

Property 1. For0 < a < 1and R(5) > 1
< pgey-1 i
o) @ =15

(ps1) @ =o.

In particular

Toh Wei Yang | Email: weiyang.toh@u.yale-nus.edu.sg

Fourier Transform of Fractional Integrals and
Derivatves

Theorem 2. Suppose q is a function in the Schwartz space such that
_ o) its20
Then
Frr@ = m‘,
where §(z) = (Fq)(x)
Corollary 2.1. Suppose that g and a are as the same in Theorem 2 and q(0) = 0, then
(FOD3a)() = (~ia)i(a).

a-analyticity and Power Rule

Definition 3. Let € (0,1] and f(a) be a real function defined on some int and
20 € [a,b). Then f(x) is aid to be a-analytic at o if there exists an interval N (zo) such that
forall € N(zo). lx) can be expressed a5 32 aa(z — o)™

Proposition 3.Let a € (0, 1] I f(z) is a-analytic at o, with convergence radius p, then

CD8fE) = (‘u,: (Tt 77@1""))\1 =3 aCD(t— 7)) (o).
Theorem 4. Let a € (0,1], and let f(x) = q(z) where q(z) s as defined in Theorem 2 and such

that f(z) = S32eanz™. Then
(na+ 1) 4

i@ = L,.,., el e

Solving the Fractional Linear Ordinary Differential
Equation via the Frobenius Method
By taking the Fourier inverse of the RHS of Equation 2 and using Theorem 2 Equation
2 reduces to a Fractional Linear Ordinary Differential Equation of the form
DY) - Flete) = 9tt) ©
where y(t) = q(0,t) and g(t) = ﬁ / e gy(—i/Zip)dp. Suppose that y(t) is a-
analytic about the a-ordinary point 0. We seck the series solution of the form

WO =30t

By Theorem 4,

e

D0 = B )
D0 KE”"run*W o}

Further suppose that (1) and g(t) are also a-anatic about O, ie () =
Zu,‘z” 2and g(t) = Zm"’ We can express the coefficients ag in terms of ao, by

3nd ¢, by the following fecurrence relation

i [.\,,f,] (me ; r»)

a0 = 0 by necessity of Corollary 2.1. We can thus compuite the coefficients of g(0, ),
hih il the e us {0 the solhon o the heat cuation

Plots of Solutions to FLODE

Figure Llotof y(t) at 50" djadege

Figure 2:P0t of () at 50 orcer of approimation where (1) =t 21+ 4 & and o) = th +.

Applications of Fractional Differential Equations

In systems where anomalous dynamics are present, fractional differential equations are
more accurate than differential equations with classical derivatives in modeling anoma
lous processes. For exampl, the Porous Medium Equation (PME) which models non
linear heat flow, and gas flow
toaccount for anomalous diffusion which then have concrete. anmmnnm suchas inthe
study of moisture dispersion in porous construction materials,
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