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Abstract

Determining the optimal distribution of flexural rigidity across a

flapping plate to maximise thrust

by Dion Ho

In this paper, we will study flapping propulsion: e.g. a fish that propels

itself through a fluid by waving its tail. An important question to ask is

how to maximise the thrust generated by the flapping motion. One of the

key parameters in the design of the tail – which we will model as a thin

plate – is the distribution of rigidity across it. Our goal is to determine the

optimal distribution to maximise thrust. We will present a unique approach

to this problem, and our work complements earlier work done by Moore and

Wu. In particular, we will solve for the kinematics of the tail/plate using

the Unified Transform Method (UTM). Through this process, we will also

facilitate the application of the UTM to physical problems.
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Chapter 1

Introduction

Consider a fish that propels itself through a fluid by waving its tail. Suppose

the movement of the tail is two-dimensional with the length of the tail as

the x-axis and the y-axis defined to be perpendicular to it. If we simplify

the tail to be a plate of negligable thickness and view it in the plane of its

movement, it can be modelled as a one-dimensional beam (see Figure 1.1).

The movement/kinematics of the beam is governed by the Euler-Bernoulli

dynamic beam equation (see [4] for its derivation and properties):

∂2h

∂t2
+ µ

∂2

∂x2

(
S(x)

∂2h

∂x2

)
= p(x, t), (1.0.1)

where µ > 0 is the constant mass per unit length, S(x) > 0 is the flexural

rigidity of the beam, and p(x, t) is the net pressure exerted on the beam

(per unit length) by the surrounding fluid. The movement of the plate af-

fects the surrounding fluid in such a way as to generate thrust. Thus, if

we know both the kinematics of the beam and the surrounding fluid flow,

we can calculate the thrust generated by the waving plate. The overarch-

ing goal of this capstone project is to determine the optimal distribution of

flexural rigidity (henceforth shortened to “rigidity”) across a flapping plate

to maximise thrust. We hope that our results will benefit the engineering
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Figure 1.1: An illustration of our fish tail model and its
kinematics. The kinematics shown are for illustrative pur-

poses only and are not mathematically accurate.

of propulsive devices like swimming fins or flapping foils (see [1] for a fasci-

nating discussion of flapping foil propulsion systems). Our results may also

be useful in biomimicry and aquatic evolutionary biology.

1.1 Preliminary discussion and literature re-

view

On the surface, (1.0.1) appears to be a standard inhomogeneous beam equa-

tion. If standard boundary and initial conditions are specified, we get an

initial boundary value problem (IBVP) that is difficult to solve due to the

fourth order partial differential equation (PDE), but is well-studied. The

additional complication in our case is that p(x, t) is dependent on h(x, t):

we need to solve PDEs involving h(x, t) to determine p(x, t). Consider the

underlying physics: we would expect the kinematics of the beam to be af-

fected by the pressure exerted on it by the surrounding fluid. The pressure,

in turn, is determined by the fluid flow around the beam. Yet, the fluid

2
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flow is itself affected by the kinematics of the beam. Thus, we have a mutu-

ally dependent system. In order to properly solve for both the kinematics

and the fluid flow, we need to solve a system of complicated PDEs which

includes (1.0.1). The full problem, without any major simplifying assump-

tions, likely remains analytically intractable. In the proceeding literature

review, we will discuss Moore’s [12, 13] and Wu’s [16] work on the problem,

and highlight the gaps that remain. Our work will help to fill in these gaps

and bring us closer to a complete solution of the problem.

1.1.1 Wu’s fluid flow analysis

In [16], Wu starts with the assumption that the kinematics h(x, t) are

known. From our discussion above, it is clear that this assumption is

a contrivance, and it prevents Wu’s results from being of practical use.

Nonetheless, this assumption allows Wu to produce a number of important

analytical results regarding the fluid flow. We will reproduce some of [16,

pp. 321–324] to explicate how the fluid flow, and in turn the pressure, is

affected by the kinematics of the beam. The fluid flow is not the focus for

our present work though; the reader is referred to [16] for more details.

Wu’s starting point for his fluid flow analysis is the flow velocity vector

~q = with (x, y) components (U + u, v). The undisturbed velocity of the

stream, which is assumed to be initially uniform, is (U, 0) with U > 0. The

perturbation of the stream is given by the vector (u, v). The flow velocity

satisfies the continuity equation ∇ · ~q = ux + vy = 0. Wu assumes that

u, v � U and uses the linearised Euler ideal fluid equations to get

(
∂

∂t
+ U

∂

∂x

)
~q = ∇φ(x, y, t),

3
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where φ is Prandtl’s acceleration potential. Importantly, the term p(x, t)

which appears in (1.0.1) is given by

p(x, t) = ρ(φ(x, 0+, t)− φ(x, 0−, t)),

for ρ the density of the fluid. This equation relates the pressure exerted on

the beam to the acceleration potential and tells us that the net pressure is

the difference in the pressure exerted on the top and bottom of the beam.

Wu shows that φ is a harmonic function and defines its harmonic conjugate

as ψ with φx = ψy and φy = −ψx. Consequently, Wu derives the relation

between the kinematics of the beam and the acceleration potential on its

top and bottom surfaces as

φy = −ψx =

(
∂

∂t
+ U

∂

∂x

)2

h on y = ±0.

In addition, Wu gives the formula for thrust (in the x-direction) as

T =

∫
X

Re(p(x, t)) Re(hx(x, t))dx+ Ts,

where X is domain of the beam, the first term is the thrust due to the net

pressure on the beam, denoted Tp, and the second term is the thrust due to

leading-edge suction (there is a flow singularity at the leading edge). Ts can

be calculated from the kinematics and pressure as well, though less directly.

Moore discusses the calculation of thrust in further detail in [12, p. 611].

In practice there will also be a drag term, which has dependence on the

velocity and the kinematics, acting against the thrust.

In summary, if the kinematics of the beam and the net pressure exerted

4
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on it are known, then the thrust generated by the flapping plate can be de-

termined. Wu made two major assumptions though. The first, as previously

discussed, is that the kinematics are known. The second assumption, which

is also used by Moore, is that the kinematics are simple harmonic. This

second assumption is common in physics and it is partly justified by Wu’s

assumption that the amplitude of h and hx are small. Note too that the

Euler-Bernoulli beam equation is only valid for small deflections. Nonethe-

less, it remains an open question as to whether the actual kinematics can be

well-approximated as simple harmonic motion. We will attempt to answer

this question in our present work.

1.1.2 Moore’s numerics and hypothesis

Moore provides two approaches to solving the full problem. Both ap-

proaches amount to simplifying the kinematics sufficiently that the full

problem can be solved either analytically [12] or numerically [13].

In [12], Moore assumes a torsional spring model for simple harmonic

kinematics to derive h(x, t) = (β0/2 + β1) ejωt, where β0, β1 are to be deter-

mined. Physically, the model represents a rigid beam attached to a driver at

the leading edge through a torsional spring. Moore argues that this model

approximates a concentration of flexibility at the leading edge; we can think

of the rigidity function S(x) in (1.0.1) being small at the leading edge and

large everywhere else. Using this assumption and building on Wu’s work,

Moore is able to analytically solve for both the kinematics and pressure.

In [13], Moore uses the beam equation (1.0.1) and again assumes the

kinematics to be simple harmonic. This implies that htt = −Fh, where

F > 0, and h(x) = η(x)ejωt (j is the imaginary constant). Consequently,

5
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he simplifies (1.0.1) to the ordinary differential equation (ODE):

µ
∂2

∂x2

(
S(x)

∂2h

∂x2

)
− Fh = p(x, t),

which is [13, equation (7)], though with different constants. Even with this

simplification, the resultant system is analytically intractable. Thus, Moore

uses a numerical method: Chebyshev collocation with GMRES to solve it

for the kinematics, pressure, and consequently thrust. In addition, Moore

numerically optimised the thrust over uniform, linear, quadratic, and cu-

bic distributions of S(x) (see [13, p. 4] for more details). Moore’s results

indicate that, for a fixed driving force, thrust is maximised when the flexi-

bility of the beam is concentrated at its leading edge. His ostensible limit

case, the torsional spring model, produces the most thrust. Moore’s findings

provide a hypothetical answer to the overarching problem. Unfortunately,

since Moore’s approach is numerical, the findings are unproven. In addition,

Moore, like Wu, relied greatly upon the assumption that the kinematics are

simple harmonic, but the extent to which this is true is unclear. Thus, our

primary objective will be to rigorously analyse the kinematics of the beam.

Our work will, in a sense, be the opposite of Wu’s work: he assumes the

kinematics are known and solves for the fluid flow/pressure, we will assume

that the pressure is known and solve for the kinematics.

1.1.3 The Unified Transform Method (UTM)

We will use the three-stage Unified Transform Method (UTM), also known

as the Fokas method, to solve for the kinematics. The UTM is a powerful

and relatively new PDE solving method that can solve most linear PDEs

6
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and even some non-linear PDEs. It was first presented by Fokas in 1997 [5].

Miller and Smith provide a comprehensive overview of the UTM, together

with a summary of its history, in [11, §2]. Recently, in 2018, Deconinck et

al. [3] developed a variant of the UTM to address equations of the form

Qt + Λ(k)Q = 0, k := −i∂x

where Q is an N -dimensional vector and Λ is a matrix-valued polynomial

of size N ×N and order n; for the wave and beam equations, n = 2. Their

paper built upon the work of Fokas and Pelloni in [6]. Given the recency of

Deconinck’s UTM variant, we are, as far as we know, the first to apply it to

the beam equation. Even the UTM cannot solve the beam equation with a

continuous distribution of rigidity S(x) though. Therefore, we will instead

consider a piecewise constant S(x). This leads to an interface problem.

The UTM has been successfully applied to interface problems, though only

for equations that are first-order in time [2, 15]. Increasing the number of

pieces in S(x) will allow it to better approximate continuous functions.

Although the UTM is in theory a very powerful PDE solving tool, there

are practical concerns inherent to the solving of high order PDE problems.

In particular, the resultant solution representation tends to be extremely

long. This is especially true when the spatial domain is a finite interval since

there are two boundary conditions to address. In [15], for example, Sheils

and Deconinck used the UTM to solve the zero potential linear Schrodinger

equation initial interface value problem (IIVP) on a finite interval. Their

full solution representation spans two and a half pages [15, pp. 270–273].

Thus, our secondary objective is to address these practical concerns with

regard to the UTM and facilitate its practical application.

7
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Chapter 2

Solving for the Kinematics

2.1 Problem setup

We begin by specifying the full beam equation IIVP that we wish to solve:

∂2h

∂t2
+ µ

∂2h

∂x2

(
S(x)

∂2h

∂x2

)
= p(x, t), (x, t) ∈ (−1, 1)× (0, T ), (2.1.1)

with µ, S(x) > 0. The time domain is finite, though an infinite domain will

not change our solution. We set up an interface by making S(x) piecewise

constant,

S(x) =


S1, x ∈ [−1, L],

S2, x ∈ (L, 1],

where S1 � S2, L ∈ (−1, 1), and we will consider the limit L → −1.

At the interface we have equality up to and including the third spatial

derivative. The initial conditions are h(x, 0) = h0(x) and ht(x, 0) = g0(x).

The boundary conditions are

h(−1, t) = A cos(ωt), hx(−1, t) = 0,

hxx(1, t) = 0, hxxx(1, t) = 0, (2.1.2)
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for some frequency ω and amplitude A. We assume that the initial condi-

tions fulfil the boundary conditions and that p(x, t) is integrable.

Our boundary conditions are taken directly from Moore [13, p. 3]. Phys-

ically, hx(−1, t) = 0 and h(−1, t) = A cos(ωt) model the left end of the beam

being clamped to a body/driver which motion is simple harmonic. The body

supplies a pure heaving force to the beam. Instead of hx(−1, t) = 0, we

could have chosen hxx(−1, t) = 0, which implies zero curvature and models

a pivot at x = −1. This would represent a pure pitching driving force. We

can also choose αhx(−1, t) + βhxx(−1, t) = 0 to represent a driving force

that is part heaving and part pitching. For our right boundary conditions

to imply a free end, we need the beam at x = 1 to have zero curvature

and zero shear. Thus, we use hxx(1, t) (curvature) = hxxx(1, t) (shear) = 0.

Further physical justification can be found in [4, §4.3] and [7, pp. 940–941].

2.2 Stage 1

We will mostly follow Stage 1 of the UTM in [3]1. Since Deconinck [3] only

addresses homogeneous PDEs, we will have to adapt his UTM variant to our

inhomogeneous PDE. We begin by decomposing (2.1.1) into two systems

ht = g, gt = −µSnhxxxx + p(x, t), n(x) = 1, 2, (2.2.1)

which correspond to each sub-interval. We assume that the IIVP, and by

extension the systems (2.2.1), have a solution. This is usually justified in

Stage 3 through verifying that the final solution representation satisfies the

problem. In our case, we can be confident, a priori, that this assumption of

1We used a Python-based computer algebra system called SymPy for verification.
The Jupyter Notebook can be found here: https://tinyurl.com/capstoneDH.

9
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solvability holds given the physical context from which the problem arose.

Consequently, we will omit Stage 3. Re-express the systems (2.2.1) as

Qt + Λn(−i∂x)Q = ρ, Q =

h
g

 , Λn(k) =

 0 −1

µSnk
4 0

 , ρ =

0

p

 ,

(2.2.2)

for k ∈ C. The right-hand side of (2.2.2) is non-zero because our PDE is

inhomogeneous. The eigenvalues of Λn(k) are

Ω(1)
n = ik2

√
µSn, Ω(2)

n = −ik2
√
µSn. (2.2.3)

We drop the explicit k-dependence of the eigenvalues for simplicity of no-

tation, though we will keep the k-dependence of functions that include the

eigenvalues. Importantly, these eigenvalues do not have branch points. If

they did, this approach would be significantly more complicated. A discus-

sion of branch points and how to address them may be found in [3]. Since

µ, Sn > 0, the eigenvalues are distinct and Λn(k) may be diagonalised as

Λn(k) = A−1
n (k)Dn(k)An(k), Dn(k) = diag

(
Ω(1)
n ,Ω(2)

n

)
,

for some matrix An(k). Consequently, (2.2.2) can be expressed as

(
e−ikxI+Dn(k)tAn(k)Q

)
t
−
(
e−ikxI+Dn(k)tAn(k)Xn(x, t, k)

)
x

= 0, (2.2.4)

where Xn(x, t, k) incorporates the inhomogeneity p(x, t):

Xn(x, t, k) = i

(
Λn(k)− Λn(−i∂x)

k − (−i∂x)

)
Q+ i(k − (−i∂x))−1ρ.

10
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Proof. Our proof for the form of Xn(x, t, k) follows a similar proof in [6, p.

88]. First, perform the differentiations in (2.2.4) to get

Dn(k)e−ikxI+Dn(k)tAn(k)Q+ e−ikxI+Dn(k)tAn(k)Qt

−
(
−ike−ikxI+Dn(k)tAn(k)Xn(x, t, k) + e−ikxI+Dn(k)tAn(k)∂xXn(x, t, k)

)
= 0.

Using (2.2.2), we substitute Qt with −Λn(−i∂x)Q+ ρ to get

Dn(k)e−ikxI+Dn(k)tAn(k)Q+ e−ikxI+Dn(k)tAn(k)(−Λn(−i∂x)Q+ ρ)

−
(
−ike−ikxI+Dn(k)tAn(k)Xn(x, t, k) + e−ikxI+Dn(k)tAn(k)∂xXn(x, t, k)

)
= 0,

where Dn(k) and e−ikxI+Dn(k)t are diagonal matrices, which commute. Pre-

multiply by A−1
n (k)e−(−ikxI+Dn(k)t) to get

A−1
n (k)Dn(k)An(k)Q− Λn(−i∂x)Q+ ρ

− (−ikXn(x, t, k) + ∂xXn(x, t, k)) = 0

=⇒ Λn(k)Q− Λn(−i∂x)Q+ ρ− (−ikXn(x, t, k) + ∂xXn(x, t, k)) = 0

=⇒ (Λn(k)− Λn(−i∂x))Q+ ρ = (−ik + ∂x)Xn(x, t, k)

=⇒ Xn(x, t, k) =

(
Λn(k)− Λn(−i∂x)
−ik + ∂x

)
Q+ (−ik + ∂x)

−1ρ

=⇒ Xn(x, t, k) = i

(
Λn(k)− Λn(−i∂x)

k − (−i∂x)

)
Q+ i(k − (−i∂x))−1ρ

which is the desired form.

Consequently, we have

An(k) =

Ω
(1)
n −1

Ω
(2)
n −1

 , Xn(x, t, k) =

 c1(t)eikx

µSn(k3 − ik2∂x − k∂2
x + i∂3

x)h+ iP

 ,

11
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where (k + i∂x)P (x, t) = p(x, t) which is equivalent to

P (x, t) = eikx
(∫ x

−1

−ip(y, t)e−ikydy + c2(t)

)
.

The terms c1(t)eikx and c2(t)eikx will vanish when substituted into (2.2.4).

Thus, we can set c1(t) ≡ c2(t) ≡ 0. Each system in (2.2.4) can be decoupled

to form two equations

(
e−ikx+Ω

(m)
n t(Ω(m)

n h− g)
)
t

+
(
e−ikx+Ω

(m)
n t
(
µSn(k3h− ik2hx − khxx + ihxxx) + iP

))
x

= 0,

for m = 1, 2. In UTM literature, these equations are called the local re-

lations. The IIVP has two sets of local relations corresponding to each

sub-interval and indexed by n.

Next, we integrate each local relation in each set over its respective

space-time rectangle (−1, L) × (0, t) or (L, 1) × (0, t). The local relations

are in divergence form: ψt − ϕx = 0. Therefore, we can apply Green’s

theorem to get a set of global relations for each sub-interval. For m = 1, 2:

(
Ω

(m)
1 ĥ0 − ĝ0

)
(k; 1) + eΩ

(m)
1 t
(
ĝ − Ω

(m)
1 ĥ

)
(k; t; 1)

+ eik
(
µS1

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 1,−1)

− e−iLk
(
µS1

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 1, L) = 0, n(x) = 1,(

Ω
(m)
2 ĥ0 − ĝ0

)
(k; 2) + eΩ

(m)
2 t
(
ĝ − Ω

(m)
2 ĥ

)
(k; t; 2)

+ e−iLk
(
µS2

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 2, L)

− e−ik
(
µS2

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 2, 1) = 0, n(x) = 2.

(2.2.5)

12
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The global relations are valid for all k ∈ C. Note that L should more accu-

rately be written as L− (left limit), for n(x) = 1, and L+ (right limit), for

n(x) = 2. The distinction is irrelevant only because we have equality up to

and including the third spatial derivative at the interface. The denotations

used in the global relations are

ĥ0(k; 1) =

∫ L

−1

e−ikxh0(x)dx, ĝ0(k; 1) =

∫ L

−1

e−ikxg0(x)dx,

ĥ(k; t; 1) =

∫ L

−1

e−ikxh(x, t)dx, ĝ(k; t; 1) =

∫ L

−1

e−ikxg(x, t)dx,

ĥ0(k; 2) =

∫ 1

L

e−ikxh0(x)dx, ĝ0(k; 2) =

∫ 1

L

e−ikxg0(x)dx,

ĥ(k; t; 2) =

∫ 1

L

e−ikxh(x, t)dx, ĝ(k; t; 2) =

∫ 1

L

e−ikxg(x, t)dx, (2.2.6a)

and

u
(m)
0 (k; t;n, λ) =

∫ t

0

eΩ
(m)
n sh(λ, s)ds, u

(m)
1 (k; t;n, λ) =

∫ t

0

eΩ
(m)
n shx(λ, s)ds,

u
(m)
2 (k; t;n, λ) =

∫ t

0

eΩ
(m)
n shxx(λ, s)ds, u

(m)
3 (k; t;n, λ) =

∫ t

0

eΩ
(m)
n shxxx(λ, s)ds,

P̃ (m)(k; t;n, λ) =

∫ t

0

eΩ
(m)
n sP (λ, s)ds. (2.2.6b)

For each sub-interval, we use the two global relations (2.2.5) to eliminate

ĝ, then make ĥ the subject. Next, we apply the inverse Fourier transform

so that ĥ is transformed to 2πh. We obtain

2πh(x, t) =
T1(x, t; 1) + T

(2)
2 (x, t; 1)− T (1)

2 (x, t; 1)− T (2)
3 (x, t; 1) + T

(1)
3 (x, t; 1), x ∈ (−1, L],

T1(x, t; 2) + T
(2)
3 (x, t; 2)− T (1)

3 (x, t; 2)− T (2)
4 (x, t; 2) + T

(1)
4 (x, t; 2), x ∈ (L, 1),

13



Chapter 2. Solving for the Kinematics 14

where

T1 (x, t;n) =

∫ ∞
−∞

eikx

(
e−Ω

(2)
n t
(

Ω
(2)
n ĥ0 − ĝ0

)
− e−Ω

(1)
n t
(

Ω
(1)
n ĥ0 − ĝ0

))
(k;n)

Ω
(2)
n − Ω

(1)
n

dk,

T
(m)
2 (x, t; 1) =

∫ ∞
−∞

eik(x+1)−Ω
(m)
1 t


(
µS1

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 1,−1)

Ω
(2)
1 − Ω

(1)
1

 dk,

T
(m)
3 (x, t;n) =

∫ ∞
−∞

eik(x−L)−Ω
(m)
n t


(
µSn

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t;n, L)

Ω
(2)
n − Ω

(1)
n

 dk,

T
(m)
4 (x, t; 2) =

∫ ∞
−∞

eik(x−1)−Ω
(m)
2 t


(
µS2

(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3

)
+ iP̃ (m)

)
(k; t; 2, 1)

Ω
(2)
2 − Ω

(1)
2

 dk.

(2.2.7)

In this preliminary solution representation, both T1 are known and no fur-

ther manipulation is necessary. Initially, each of
(
T

(2)
2 − T (1)

2

)
,
(
T

(2)
3 − T (1)

3

)
and

(
T

(2)
4 − T (1)

4

)
were combined. We can distribute these integrals without

concern because our eigenvalues have no branch points, and this is done to

prepare for the deformation of integration contours.

Standard UTM procedure requires that we deform the integration con-

tour of every term except T1. We will make use of these deformations at

the end of Stage 2, in §2.3.1. We first define the regions

D±m =
{
k ∈ C± : Re

(
Ω(m)
n

)
< 0
}
, D±m = D±m \

⋃
ξ∈Ξ

R(ξ,M). (2.2.8)

The regions are independent of index n and correspond to the quadrants of

14



Chapter 2. Solving for the Kinematics 15

Figure 2.1: An illustration of the four regions defined by
(2.2.8). They each correspond to a quadrant of C. The
circles are created by the open discs we removed from D±m.
While the illustration of the circles is in general not math-
ematically accurate, we will define Ξ such that the circles

have 4-fold rotational symmetry about the origin.

C. The boundaries ∂D±m and ∂D±m are oriented in the positive sense. The

set Ξ contains the zeros of some functions, and each R(ξ,M) is an open disc

with a small radius M centered on a zero ξ (these are discussed in §2.3.1

and §2.3.2). Figure 2.1 provides an illustration of the regions D±m.

From (2.2.6b), the spectral inhomogeneities P̃ (m) and spectral functions

u
(m)
0 , u

(m)
1 , u

(m)
2 , u

(m)
3 multiplied by e−Ω

(m)
n t each has the form

∫ t

0

eΩ
(m)
n (s−t)φ(λ, s)ds.

Integration by parts gives

∫ t

0

eΩ
(m)
n (s−t)φ(λ, s)ds =

1

Ω
(m)
n

(
φ(λ, t)− e−Ω

(m)
n tφ(λ, 0)−

∫ t

0

eΩ
(m)
n (s−t) (∂sφ(λ, s)) ds

)
=⇒

∣∣∣∣∫ t

0

eΩ
(m)
n (s−t)φ(λ, s)ds

∣∣∣∣ = O
(
|k|−2)

15



Chapter 2. Solving for the Kinematics 16

uniformly in arg(k)2, as k → ∞ within C+ \ D+
m, since the eigenvalues are

directly proportional to k2. Therefore, the term in the square brackets of

each of T
(m)
2 (x, t; 1) and T

(m)
3 (x, t; 2) decays like O(k−1). Given also that

the only singularity, at k = 0, is removable, the integrals along the contour

of C+ \ D+
m equal zero by Jordan’s lemma and Cauchy’s residue theorem.

Therefore, we can deform their integration contours from +R to ∂D+
m. By

a similar argument and using Jordan’s lemma for the lower complex plane,

the integration contour of T
(m)
3 (x, t; 1) and T

(m)
4 (x, t; 2) can be deformed

from −R to ∂D−m. We also deform ∂D+
m to ∂D+

m and ∂D−m to ∂D−m. The

reasons and justifications for this second deformation are given in §2.3.1 and

§2.3.2. Consequently, we have achieved the Ehrenpreis form:

2πh(x, t) =
T1(x, t; 1) + I

(2)
2 (x, t; 1)− I(1)

2 (x, t; 1) + I
(2)
3 (x, t; 1)− I(1)

3 (x, t; 1), x ∈ (−1, L],

T1(x, t; 2) + I
(2)
3 (x, t; 2)− I(1)

3 (x, t; 2) + I
(2)
4 (x, t; 2)− I(1)

4 (x, t; 2), x ∈ (L, 1),

(2.2.9)

where T1 (x, t;n) is the same as in (2.2.7) and

I
(m)
2 (x, t; 1) =

∫
∂D+

m

Integrand of T
(m)
2 (x, t; 1),

I
(m)
3 (x, t; 1) =

∫
∂D−

m

Integrand of T
(m)
3 (x, t; 1),

I
(m)
3 (x, t; 2) =

∫
∂D+

m

Integrand of T
(m)
3 (x, t; 2),

I
(m)
4 (x, t; 2) =

∫
∂D−

m

Integrand of T
(m)
4 (x, t; 2).

2In this case, we specified the modulus of each function, as well as uniformity with
respect to arg(k). In general, however, these may be unwritten since our O follows the
definition in [14, §3.2], and has both uniformity and the modulus inherent to its definition.

16



Chapter 2. Solving for the Kinematics 17

2.3 Stage 2

Standard UTM procedure requires a Dirichlet-to-Neumann map which in-

volves finding expressions for each of the 32 spectral functions that appear

in the Ehrenpreis form (2.2.9):

u
(m)
0 (k; 1,−1) , u

(m)
0 (k; 1, L), u

(m)
0 (k; 2, L), u

(m)
0 (k; 2, 1),

u
(m)
1 (k; 1,−1) , u

(m)
1 (k; 1, L), u

(m)
1 (k; 2, L), u

(m)
1 (k; 2, 1),

u
(m)
2 (k; 1,−1), u

(m)
2 (k; 1, L), u

(m)
2 (k; 2, L), u

(m)
2 (k; 2, 1) ,

u
(m)
3 (k; 1,−1), u

(m)
3 (k; 1, L), u

(m)
3 (k; 2, L), u

(m)
3 (k; 2, 1) , m = 1, 2.

We temporarily drop all explicit t-dependence of the terms for simplicity

of notation and because they are unimportant for our analysis in Stage 2.

The spectral inhomogeneity P̃ (m) is known because the inhomogeneity p is

(assumed to be) known. Given our boundary conditions (2.1.2), the boxed

spectral functions are also known. Therefore, there remain 24 unknown

spectral functions for which we need to solve.

Let us rewrite our global relations (2.2.5) as

− e−iLk
(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3 +

i

µS1

P̃ (m)

)
(k; 1, L)

+ eik
(
−ku(m)

2 + iu
(m)
3

)
(k; 1,−1)

= eik
(
−k3u

(m)
0 + ik2u

(m)
1 − i

µS1

P̃ (m)

)
(k; 1,−1)−K(m)

1 ,

e−iLk
(
k3u

(m)
0 − ik2u

(m)
1 − ku(m)

2 + iu
(m)
3 +

i

µS2

P̃ (m)

)
(k; 2, L)

+ e−ik
(
−k3u

(m)
0 + ik2u

(m)
1

)
(k; 2, 1)

= e−ik
(
−ku(m)

2 + iu
(m)
3 +

i

µS2

P̃ (m)

)
(k; 2, 1)−K(m)

2 , (2.3.1)

17



Chapter 2. Solving for the Kinematics 18

where

K
(m)
1 =

1

µS1

(
Ω

(m)
1 ĥ0 − ĝ0 + eΩ

(m)
1 t
(
ĝ − Ω

(m)
1 ĥ

))
(k; 1),

K
(m)
2 =

1

µS2

(
Ω

(m)
2 ĥ0 − ĝ0 + eΩ

(m)
2 t
(
ĝ − Ω

(m)
2 ĥ

))
(k; 2),

form = 1, 2. The right and left hand side of each equation in (2.3.1) contains

the known and unknown spectral functions respectively. The functions ĥ

and ĝ are treated as known functions for we will later show that they do not

contribute to the solution. All other functions are known. In each K term,

the arguments (k; 1) and (k; 2) only pertain to the functions ĥ0, ĝ0, ĥ, ĝ. The

argument of each eigenvalue Ω
(m)
n , while unwritten, will always be k. The

significance of this will be made clear later when we apply maps of k.

Let us examine the symmetries of the dispersion relation and solve

det
(
Λn(ν(k))− Ω(m)

n (k)I
)

= 0, n(x) = 1, 2, m = 1, 2,

for ν(k). We have the trivial solution: k and the invariance solution: −k.

In addition, by considering the permutations of the eigenvalue indices, n

and m, we can find the solutions that interchange index m: ±ik, as well as

the solutions that interchange index n, and the solutions that interchange

both indices n and m. Consequently, we have the eight maps

k 7→ k, k 7→ −k, k 7→


(
S2

S1

) 1
4
k, n(x) = 1,(

S1

S2

) 1
4
k, n(x) = 2,

k 7→


−
(
S2

S1

) 1
4
k, n(x) = 1,

−
(
S1

S2

) 1
4
k, n(x) = 2,

k 7→ ik, k 7→ −ik, k 7→


(
S2

S1

) 1
4
ik, n(x) = 1,(

S1

S2

) 1
4
ik, n(x) = 2,

k 7→


−
(
S2

S1

) 1
4
ik, n(x) = 1,

−
(
S1

S2

) 1
4
ik, n(x) = 2.

18



Chapter 2. Solving for the Kinematics 19

Given these eight maps, a naive approach is to apply every map to

(2.3.1). This approach, however, will result in the appearance of eight super-

fluous unknown spectral boundary functions u
(m)
2 (k; 2,−1), u

(m)
3 (k; 2,−1),

u
(m)
0 (k; 1, 1) and u

(m)
1 (k; 1, 1), for m = 1, 2. Although we can solve for these

superfluous unknowns alongside the unknowns that appear in the Ehren-

preis form, it would require solving a larger system than necessary (we will

have 32 equations and 32 unknowns). We propose an alternative approach

that works for our present problem but may have limited generalisability;

this method requires smoothness at the interface. We use maps that do not

interchange index n to eliminate all unknown spectral boundary functions,

then use the remaining maps to solve for the unknown spectral interface

functions. There are many equivalent ways to accomplish this and we will

only present one way.

First, apply k 7→ ik and divide throughout by i to get

− eLk
(
−k3u

(m)
0 + k2u

(m)
1 − ku(m)

2 + u
(m)
3 +

1

µS1

P̃ (m)

)
(k; 1, L)

e−k
(
−ku(m)

2 + u
(m)
3

)
(k; 1,−1) = e−k

(
k3u

(m)
0 − k2u

(m)
1 − 1

µS1

P̃ (m)

)
(k; 1,−1) +K

(m)
3 ,

eLk
(
−k3u

(m)
0 + k2u

(m)
1 − ku(m)

2 + u
(m)
3 +

1

µS2

P̃ (m)

)
(k; 2, L)

+ ek
(
k3u

(m)
0 − k2u

(m)
1

)
(k; 2, 1) = ek

(
−ku(m)

2 + u
(m)
3 +

1

µS2

P̃ (m)

)
(k; 2, 1) +K

(m)
4 ,

K
(m)
3 =

i

µS1

(
Ω

(m)
1 ĥ0 − ĝ0 + eΩ

(m)
1 t
(
ĝ − Ω

(m)
1 ĥ

))
(ik; 1),

K
(m)
4 =

i

µS2

(
Ω

(m)
2 ĥ0 − ĝ0 + eΩ

(m)
2 t
(
ĝ − Ω

(m)
2 ĥ

))
(ik; 2). (2.3.2a)

The effect of the map k 7→ ik on the eigenvalues is to swap their m-index, i.e.

Ω
(1)
n 7→ Ω

(2)
n and Ω

(2)
n 7→ Ω

(1)
n . The argument of each eigenvalue remains k

19



Chapter 2. Solving for the Kinematics 20

whereas the argument of each function ĥ0, ĝ0, ĥ, ĝ is transformed accordingly.

This explains the forms of functions K
(m)
3 and K

(m)
4 .

Next, apply k 7→ −ik and divide throughout by i to get

− e−Lk
(
k3u

(m)
0 + k2u

(m)
1 + ku

(m)
2 + u

(m)
3 +

1

µS1

P̃ (m)

)
(k; 1, L)

ek
(
ku

(m)
2 + u

(m)
3

)
(k; 1,−1) = ek

(
−k3u

(m)
0 − k2u

(m)
1 − 1

µS1

P̃ (m)

)
(k; 1,−1) +K

(m)
5 ,

e−Lk
(
k3u

(m)
0 + k2u

(m)
1 + ku

(m)
2 + u

(m)
3 +

1

µS2

P̃ (m)

)
(k; 2, L)

+ e−k
(
−k3u

(m)
0 − k2u

(m)
1

)
(k; 2, 1) = e−k

(
ku

(m)
2 + u

(m)
3 +

1

µS2

P̃ (m)

)
(k; 2, 1) +K

(m)
6 ,

K
(m)
5 =

i

µS1

(
Ω

(m)
1 ĥ0 − ĝ0 + eΩ

(m)
1 t
(
ĝ − Ω

(m)
1 ĥ

))
(−ik; 1),

K
(m)
6 =

i

µS2

(
Ω

(m)
2 ĥ0 − ĝ0 + eΩ

(m)
2 t
(
ĝ − Ω

(m)
2 ĥ

))
(−ik; 2). (2.3.2b)

We use (2.3.2a) and (2.3.2b) to solve for the eight unknown boundary spec-

tral functions. In effect, we only have to solve two 2-by-2 systems because

the equations are decoupled about the indices n and m. The equations are

decoupled about m since we previously diagonalised Λn(k) (see (2.2.2) to

(2.2.4)). The decoupling about n stems from the fact that each set of global

relations (2.2.5) pertains solely to one sub-interval. We get

(
−ku(m)

2 + iu
(m)
3

)
(k; 1,−1) =

(
k3u

(m)
0 − ik2u

(m)
1 − i

µS1

P̃ (m)

)
(k; 1,−1)

+ (sinh(k(L+ 1)) + i cosh(k(L+ 1)))

(
k2u

(m)
1 + u

(m)
3 +

1

µS1

P̃ (m)

)
(k; 1, L)

− (i sinh(k(L+ 1)) + cosh(k(L+ 1)))
(
k3u

(m)
0 + ku

(m)
2

)
(k; 1, L)

+
i+ 1

2
ekK

(m)
3 +

i− 1

2
e−kK

(m)
5 , (2.3.3a)
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and

(
−k3u

(m)
0 + ik2u

(m)
1

)
(k; 2, 1) =

(
ku

(m)
2 − iu(m)

3 − i

µS2

P̃ (m)

)
(k; 2, 1)

+ (i cosh(k(1− L))− sinh(k(1− L)))

(
k2u

(m)
1 + u

(m)
3 +

1

µS2

P̃ (m)

)
(k; 2, L)

+ (sinh(k(L+ 1)) + i cosh(k(L+ 1)))
(
k3u

(m)
0 + ku

(m)
2

)
(k; 2, L)

+
1− i

2
ekK

(m)
6 − i+ 1

2
e−kK

(m)
4 , (2.3.3b)

both of which also appear in the Ehrenpreis form (2.2.9). Substitute (2.3.3a)

and (2.3.3b) into (2.3.1) to attain

[
k3θ−1 k2η+

1 kθ+
1 η−1

]
(k) ·

[
u

(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 1, L)

= 2eik
(
−k3u

(m)
0 + ik2u

(m)
1

)
(k; 1,−1)− η−1 (k)

µS1

P̃ (m)(k; 1, L) +K
(m)
7 ,[

k3θ+
2 k2η−2 kθ−2 η+

2

]
(k) ·

[
u

(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 2, L)

= 2e−ik
(
−ku(m)

2 + iu
(m)
3 +

i

µS2

P̃ (m)

)
(k; 2, 1)− η+

2 (k)

µS2

P̃ (m)(k; 2, L) +K
(m)
8 ,

(2.3.4a)

which is written as a dot product so that the coefficients of the spectral

interface functions may be easily extracted. We define

θ±1 (k) = ±e−iLk − 1

2
eik
(
(1 + i) ek(L+1) + (1− i) e−k(L+1)

)
,

η±1 (k) = ±ie−iLk +
1

2
eik
(
(1 + i) ek(L+1) − (1− i) e−k(L+1)

)
,

θ±2 (k) = ±e−iLk +
1

2
e−ik

(
(i− 1) ek(1−L) − (1 + i) e−k(1−L)

)
,

η±2 (k) = ±ie−iLk +
1

2
e−ik

(
(i− 1) ek(1−L) + (1 + i) e−k(1−L)

)
, (2.3.5)
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K
(m)
7 =

1

2µS1

[
ek(1+i) (i− 1)

(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(ik; 1)

−ek(i−1) (1 + i)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(−ik; 1)

+2
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(k; 1)

]
,

K
(m)
8 =

1

2µS2

[
ek(1−i) (1 + i)

(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(−ik; 2)

−e−k(i+1) (i− 1)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(ik; 2)

+2
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(k; 2)

]
.

Now apply three unused non-identity maps to (2.3.4a). From k 7→ −k,

[
−k3θ−1 k2η+

1 −kθ+
1 η−1

]
(−k) ·

[
u

(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 1, L)

= 2e−ik
(
k3u

(m)
0 + ik2u

(m)
1

)
(k; 1,−1)− η−1 (−k)

µS1

P̃ (m)(k; 1, L) +K
(m)
9 ,[

−k3θ+
2 k2η−2 −kθ−2 η+

2

]
(−k) ·

[
u

(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 2, L)

= 2eik
(
ku

(m)
2 + iu

(m)
3 +

i

µS2

P̃ (m)

)
(k; 2, 1)− η+

2 (−k)

µS2

P̃ (m)(k; 2, L) +K
(m)
10 ,

(2.3.4b)

where

K
(m)
9 =

1

2µS1

[
e−k(1+i) (i− 1)

(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(−ik; 1)

−ek(1−i) (1 + i)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(ik; 1)

+2
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))
(−k; 1)

]
,

K
(m)
10 =

1

2µS2

[
ek(i−1) (1 + i)

(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(ik; 2)

−ek(1+i) (i− 1)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(−ik; 2)

+2
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))
(−k; 2)

]
.
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From

k 7→


(
S2

S1

) 1
4
k, n(x) = 1,(

S1

S2

) 1
4
k, n(x) = 2,

we get

[(
S1

S2

) 3
4

k3θ+
2

(
S1

S2

) 1
2

k2η−2

(
S1

S2

) 1
4

kθ−2 η+
2

]((
S1

S2

) 1
4

k

)
·[

u
(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 1, L)

= 2e
−i

(
S1
S2

) 1
4 k

(
−
(
S1

S2

) 1
4

ku
(m)
2 + iu

(m)
3 +

i

µS2

P̃ (m)

)
(k; 1, 1)

− 1

µS2

η+
2

((
S1

S2

) 1
4

k

)
P̃ (m)(k; 1, L) +K

(m)
11 ,[(

S2

S1

) 3
4

k3θ−1

(
S2

S1

) 1
2

k2η+
1

(
S2

S1

) 1
4

kθ+
1 η−1

]((
S2

S1

) 1
4

k

)
·[

u
(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 2, L)

= 2e
i
(

S2
S1

) 1
4 k

(
−
(
S2

S1

) 3
4

k3u
(m)
0 + i

(
S2

S1

) 1
2

k2u
(m)
1

)
(k; 2,−1)

− 1

µS1

η−1

((
S2

S1

) 1
4

k

)
P̃ (m)(k; 2, L) +K

(m)
12 , (2.3.4c)

where K
(m)
11 and K

(m)
12 are given by

1

2µS2

[
e

(
S1
S2

) 1
4 k(1−i)

(1 + i)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))(
−i
(
S1

S2

) 1
4

k; 2

)

−e−
(

S1
S2

) 1
4 k(i+1)

(i− 1)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))(
i

(
S1

S2

) 1
4

k; 2

)

+2
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))((S1

S2

) 1
4

k; 2

)]
,
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1

2µS1

[
e

(
S2
S1

) 1
4 k(1+i)

(i− 1)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))(
i

(
S2

S1

) 1
4

k; 1

)

−e
(

S2
S1

) 1
4 k(i−1)

(1 + i)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))(
−i
(
S2

S1

) 1
4

k; 1

)

+2
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))((S2

S1

) 1
4

k; 1

)]
,

respectively. Note that the top equation of (2.3.4a) was mapped to the

bottom equation of (2.3.4c) and vice versa. Accordingly, K
(m)
7 was mapped

to K
(m)
12 and K

(m)
8 was mapped to K

(m)
11 . From

k 7→


−
(
S2

S1

) 1
4
k, n(x) = 1,

−
(
S1

S2

) 1
4
k, n(x) = 2,

we get

[
−
(
S1

S2

) 3
4

k3θ+
2

(
S1

S2

) 1
2

k2η−2 −
(
S1

S2

) 1
4

kθ−2 η+
2

](
−
(
S1

S2

) 1
4

k

)
·[

u
(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 1, L)

= 2e
i
(

S1
S2

) 1
4 k

((
S1

S2

) 1
4

ku
(m)
2 + iu

(m)
3 +

i

µS2

P̃ (m)

)
(k; 1, 1)

− 1

µS2

η+
2

(
−
(
S1

S2

) 1
4

k

)
P̃ (m)(k; 1, L) +K

(m)
13 ,[

−
(
S2

S1

) 3
4

k3θ−1

(
S2

S1

) 1
2

k2η+
1 −

(
S2

S1

) 1
4

kθ+
1 η−1

](
−
(
S2

S1

) 1
4

k

)
·[

u
(m)
0 u

(m)
1 u

(m)
2 u

(m)
3

]
(k; 2, L)

= 2e
−i

(
S2
S1

) 1
4 k

((
S2

S1

) 3
4

k3u
(m)
0 + i

(
S2

S1

) 1
2

k2u
(m)
1

)
(k; 2,−1)

− 1

µS1

η−1

(
−
(
S2

S1

) 1
4

k

)
P̃ (m)(k; 2, L) +K

(m)
14 , (2.3.4d)
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where K
(m)
13 and K

(m)
14 are given by

1

2µS2

[
e

(
S1
S2

) 1
4 k(i−1)

(1 + i)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))(
i

(
S1

S2

) 1
4

k; 2

)

−e
(

S1
S2

) 1
4 k(1+i)

(i− 1)
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))(
−i
(
S1

S2

) 1
4

k; 2

)

+2
(
ĝ0 − Ω

(m)
1 ĥ0 + eΩ

(m)
1 t
(

Ω
(m)
1 ĥ− ĝ

))(
−
(
S1

S2

) 1
4

k; 2

)]
,

1

2µS1

[
e
−
(

S2
S1

) 1
4 k(1+i)

(i− 1)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))(
−i
(
S2

S1

) 1
4

k; 1

)

−e
(

S2
S1

) 1
4 k(1−i)

(1 + i)
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))(
i

(
S2

S1

) 1
4

k; 1

)

+2
(
ĝ0 − Ω

(m)
2 ĥ0 + eΩ

(m)
2 t
(

Ω
(m)
2 ĥ− ĝ

))(
−
(
S2

S1

) 1
4

k; 1

)]
,

respectively. Our boundary conditions (2.1.2) imply that u1(k; 1,−1) =

u2(k; 2, 1) = u3(k; 2, 1) = 0. In order to reduce the length of our expressions

and increase readability, we encode (2.3.4a) as

a0u
(m)
0 (k; 1, L) + a1u

(m)
1 (k; 1, L) + a2u

(m)
2 (k; 1, L)a3u

(m)
3 (k; 1, L) + a

(m)
4 = 0,

α0u
(m)
0 (k; 2, L) + α1u

(m)
1 (k; 2, L) + α2u

(m)
2 (k; 2, L)α3u

(m)
3 (k; 2, L) + α

(m)
4 = 0,

where, making use of our boundary conditions,

a
(m)
4 =

P̃ (m)(k; 1, L)η−1 (k)

S1µ
+ 2eikk3u

(m)
0 (k; 1,−1)−K(m)

7 ,

α
(m)
4 =

P̃ (m)(k; 2, L)η+
2 (k)

S2µ
− 2e−ik

iP̃ (m)

S2µ
(k; 2, 1)−K(m)

8 ,

and the coefficients can be taken directly from (2.3.4a). We use Latin and

Greek letters for equations pertaining to n(x) = 1 and n(x) = 2 respectively.
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We encode (2.3.4b), (2.3.4c), (2.3.4d) in the same way with

b
(m)
4 =

P̃ (m)(k; 1, L)η−1 (−k)

S1µ
− 2e−ikk3u

(m)
0 (k; 1,−1)−K(m)

9 ,

β
(m)
4 =

P̃ (m)(k; 2, L)η+
2 (−k)

S2µ
− 2eik

iP̃ (m)

S2µ
(k; 2, 1)−K(m)

10 ,

c
(m)
4 =

1

µS2

η+
2

((
S1

S2

) 1
4

k

)
P̃ (m)(k; 1, L)− 2e

−i
(

S1
S2

) 1
4 k i

µS2

P̃ (m)(k; 1, 1)−K(m)
11 ,

κ
(m)
4 =

1

µS1

η−1

((
S2

S1

) 1
4

k

)
P̃ (m)(k; 2, L) + 2e

i
(

S2
S1

) 1
4 k

(
S2

S1

) 3
4

k3u
(m)
0 (k; 2,−1)−K(m)

12 ,

d
(m)
4 =

1

µS2

η+
2

(
−
(
S1

S2

) 1
4

k

)
P̃ (m)(k; 1, L)− 2e

i
(

S1
S2

) 1
4 k i

µS2

P̃ (m)(k; 1, 1)−K(m)
13 ,

δ
(m)
4 =

1

µS1

η−1

(
−
(
S2

S1

) 1
4

k

)
P̃ (m)(k; 2, L)

− 2e
−i

(
S2
S1

) 1
4 k

(
S2

S1

) 3
4

k3u
(m)
0 (k; 2,−1)−K(m)

14 . (2.3.6)

We use (2.3.4a), (2.3.4b), (2.3.4c) and (2.3.4d) to solve for the 16 un-

known spectral interface functions. Using Cramer’s rule, we get the follow-

ing expressions3 for m = 1, 2,

u
(m)
0 (k; 1, L) =

1

∆1(k)

∑
`qrs∈Sym({1,2,3,4})

a
(m)
` b(m)

q c(m)
r d(m)

s ,

u
(m)
1 (k; 1, L) =

1

∆1(k)

∑
`qrs∈Sym({0,2,3,4})

a
(m)
` b(m)

q c(m)
r d(m)

s ,

u
(m)
2 (k; 1, L) =

1

∆1(k)

∑
`qrs∈Sym({0,1,3,4})

a
(m)
` b(m)

q c(m)
r d(m)

s ,

u
(m)
3 (k; 1, L) =

1

∆1(k)

∑
`qrs∈Sym({0,1,2,4})

a
(m)
` b(m)

q c(m)
r d(m)

s ,

where ∆1(k) =
∑

`qrs∈Sym({0,1,2,3})

a`bqcrds,

3Note that the expression `qrs ∈ Sym({1, 2, 3, 4}) means “the permutation `qrs in
the symmetric group of set {1,2,3,4}”.
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u
(m)
0 (k; 2, L) =

1

∆2(k)

∑
`qrs∈Sym({1,2,3,4})

α
(m)
` β(m)

q κ(m)
r δ(m)

s ,

u
(m)
1 (k; 2, L) =

1

∆2(k)

∑
`qrs∈Sym({0,2,3,4})

α
(m)
` β(m)

q κ(m)
r δ(m)

s ,

u
(m)
2 (k; 2, L) =

1

∆2(k)

∑
`qrs∈Sym({0,1,3,4})

α
(m)
` β(m)

q κ(m)
r δ(m)

s ,

u
(m)
3 (k; 2, L) =

1

∆2(k)

∑
`qrs∈Sym({0,1,2,4})

α
(m)
` β(m)

q κ(m)
r δ(m)

s ,

where ∆2(k) =
∑

`qrs∈Sym({0,1,2,3})

α`βqκrδs. (2.3.7)

Finally, substitute these functions into (2.3.3a) and (2.3.3b) to attain expres-

sions for
(
−ku(m)

2 + iu
(m)
3

)
(k; 1,−1) and

(
k3u

(m)
0 − ik2u

(m)
1

)
(k; 2, 1) which

appear in the Ehrenpreis form (2.2.9). Substituting every unknown spectral

function in the Ehrenpreis form with the expressions we found almost gives

the final solution representation. The spectral functions ĝ and ĥ in the eight

terms K
(m)
7 to K

(m)
14 remain unknown. Thus, the final step of Stage 2 is to

show that they do not contribute to the solution and can be removed.

2.3.1 Demonstrating zero contribution from each in-

tegral that contains ĝ and ĥ

Consider the Ehrenpreis form (2.2.9) with all the spectral functions sub-

stituted. Assume that we can distribute the integrals to isolate ĝ and ĥ.

Then, to show that ĝ and ĥ do not contribute to the solution, we simply

need to show that the integrals that contain ĝ and ĥ each equal zero. This

would also provide post-hoc justification for the distribution of integrals.

Examining the Ehrenpreis form and its constituent terms (see (2.2.9) and

(2.2.7)), we can see that each distributed integral that contains ĝ and ĥ will
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be of the form

∫
∂D+

m

eikλφ(k)dk or

∫
∂D−

m

e−ikλφ(k)dk,

where φ contains ĝ and ĥ, and λ > 0. We want to show that φ decays

as arg(k) → ∞ within closD+
m or closD−m, depending on the integration

contour. We also want to show that φ has no non-removable singularities

in the same region. Then, by Jordan’s lemma and Cauchy’s theorem, the

integral equals zero, as desired. Within this argument lies the reason for our

contour deformations in Stage 1. If we had not deformed the integration

contours from R, our regions of interest would be closC± instead of closD±m.

It is usually impossible to make the argument for closC±.

In our case, our regions of interest are closD+
1 , closD+

2 , closD−1 , closD−2 .

These are, in order, subsets of the quadrants of C. Thus, it should be

possible for us to make the argument for closC±. Nonetheless, the argument

is much easier if we consider one quadrant at a time.

Definition 1. Define C = {closD+
1 , closD−1 , closD+

2 , closD−2 } (see (2.2.8)

for the definition of each region of interest). In addition, define Z(φ) =

{k ∈ C : φ(k)φ(ik)φ(−k)φ(−ik) = 0}.

Our other challenge is to address the complex zeros of some functions

in the Ehrenpreis form (2.2.9). The integrands in the Ehrenpreis form are

entire by Morera’s theorem. Once we distribute the integrals, however,

each distributed integrand may have singularities due to the zeros of ∆n(k).

These singularities impede our Jordan-lemma-Cauchy-theorem argument.

In addition, our asymptotic analysis requires certain functions to be suf-

ficiently far from their zeros; these functions are exponential polynomials
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and will be specified in the proceeding theorems. We want there to exist

M ∈ R+ such that for each of these functions φ, |φ(k)| > M > 0 for all

k ∈
⋃
C; assume that M � 1. We accomplish this by having the set of

complex zeros and its rotations Z(φ) ⊆ Ξ, and we preemptively remove an

open disc around each zero. The removal of the open discs poses its own

challenges though, and we will discuss the removal in §2.3.2.

Definition 2. For complex functions φ, ψ, define φ = O`(ψ) as φ = O(ψ)

uniformly in arg(k), as k →∞ within C, where C ∈ C and C is a subset of

the closure of the `th quadrant of C. We define Θ` and o` analogously4.

Lemma 3. Define θ1 = {θ+
1 , θ

−
1 , η

+
1 , η

−
1 } and θ2 = {θ+

2 , θ
−
2 , η

+
2 , η

−
2 } (see

(2.3.5) for the definition of each function). For every φ in

{
(1 + i) ek(L+1) + (1− i) e−k(L+1), (1 + i) ek(L+1) − (1− i) e−k(L+1),

(i− 1) ek(1−L) − (1 + i) e−k(1−L), (i− 1) ek(1−L) + (1 + i) e−k(1−L)
}
∪ θ1 ∪ θ2,

let Z(φ) ⊆ Ξ. Then, for all ϕ ∈ θ1 and ψ ∈ θ2,

for L ∈ (−1, 0], ϕ (k) = Θ1

(
e−iLk + eikek(L+1)

)
,Θ2

(
e−iLk + eike−k(L+1)

)
,

Θ3

(
eike−k(L+1)

)
,Θ4

(
eikek(L+1)

)
,

ψ (k) = Θ1

(
e−ikek(1−L)

)
,Θ2

(
e−ike−k(1−L)

)
,

Θ3

(
e−iLk + e−ike−k(1−L)

)
,Θ4

(
e−iLk + e−ikek(1−L)

)
,

for L ∈ (0, 1) , ϕ (k) = Θ1

(
e−iLk + eikek(L+1)

)
,Θ2

(
e−iLk + eike−k(L+1)

)
,

Θ3

(
eike−k(L+1)

)
,Θ4

(
eikek(L+1)

)
,

4Our Θ follows Knuth’s definition [8], except that, like for O in [14, §3.2], we automat-
ically add a modulus around each function that is being compared since it is complex.
We have that (φ = O(ψ) and ψ = O(φ)) ⇐⇒ φ = Θ(ψ) ⇐⇒ ψ = Θ(φ); Θ is an
equivalence relation. As for o, we use the standard definition except with the modulus.
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ψ (k) = Θ1

(
e−ikek(1−L)

)
,Θ2

(
e−ike−k(1−L)

)
,

Θ3

(
e−iLk + e−ike−k(1−L)

)
,Θ4

(
e−iLk + e−ikek(1−L)

)
.

Proof. Since L ∈ (−1, 1), L + 1 > 0 and 1 − L > 0. Refer to Table

2.1 for the asymptotic behaviour of basic exponential functions in each

complex quadrant. If L ∈ (−1, 0], it is immediately apparent from Table

2.1 that
∣∣θ±1 (k)

∣∣, ∣∣η±1 (k)
∣∣ all behave like Θ3(eike−k(L+1)) and Θ4(eikek(L+1)).

In addition, the functions behave like Θ(e−iLk) if Im(k)→∞ and Re(k) is

bounded, and like Θ(eike±k(L+1)) if Re(k)→ ±∞ and Im(k) is bounded.

Now consider k → ∞ in the first quadrant with Re(k) and Im(k) un-

bounded. When Re(k) is large, the ratio of the magnitude of any two

functions in θ1 can be approximately expressed as

∣∣F (k) e−iLk − 1
2

(1 + i) eik
(
ek(L+1)

)∣∣∣∣G (k) e−iLk + 1
2

(1 + i) eik (ek(L+1))
∣∣ ,

where F,G are functions such that |F (k)| = |G(k)| = 1. This ratio is

bounded above by

∣∣(F (k) +G(k))e−iLk −M
∣∣

M
6

(|F (k)|+ |G(k)|)
∣∣e−iLk∣∣+M

M
6

2 +M

M
,

and bounded below by

M

|(F (k) +G(k))e−iLk −M |
>

M

(|F (k)|+ |G(k)|)|e−iLk|+M
>

M

2 +M
,

since e−iLk = o1(1). If |k| is large but Re(k) is small, then Im(k) is large. In

that case the dominant term in each of θ±1 (k), η±1 (k) is e−iLk. We may anal-

yse
∣∣θ±1 (k)

∣∣, ∣∣η±1 (k)
∣∣ further to find that they are asymptotically bounded
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above and below by real functions e(L+1)z and eLz respectively, for z > 0,

though they may oscillate infinitely between these bounds. This behaviour

is tangential to the statement of the lemma though. The proof for the second

quadrant highly similar: interchange ek(L+1) with e−k(L+1). Through similar

analysis and with reference to Table 2.1, we can determine the asymptotic

behaviour of the functions in θ2.

Next, we consider L ∈ (0, 1). The proof is highly similar and in many

ways symmetric to what we have above. We can immediately conclude

that
∣∣θ±2 (k)

∣∣, ∣∣η±2 (k)
∣∣ behave like Θ1(ek(1−L)e−ik) and Θ2(e−k(1−L)e−ik). In

addition, the functions in θ2 behave like Θ(e−iLk) if Im(k)→ −∞ and Re(k)

is bounded, and like Θ(e−ike±k(L+1)) if Re(k)→ ±∞ and Im(k) is bounded.

Consider k →∞ in the fourth quadrant with Re(k) and Im(k) unbounded.

When Re(k) is large, the ratio of the magnitude of any two functions in θ2

can be approximately expressed as

∣∣F (k) e−iLk + 1
2

(i− 1) e−ik
(
ek(L+1)

)∣∣∣∣G (k) e−iLk + 1
2

(i− 1) e−ik (ek(L+1))
∣∣ ,

where F,G are functions such that |F (k)| = |G(k)| = 1. As for θ1 above,

this ratio is bounded above and below by

∣∣(F (k)−G(k))e−iLk +M
∣∣

M
6

2 +M

M
, and

M

|(G(k)− F (k))e−iLk +M |
>

M

2 +M

respectively since e−iLk = o3(1). If |k| is large but Re(k) is small, then

Im(k) is large. In that case the dominant term in each of θ±2 , η
±
2 is e−iLk.

The proof for the third quadrant is similar. Through analysis similar to

that presented above, we can determine the asymptotic behaviour of the
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If k →∞ within: Decay Blow-up
D+

1 (1st quadrant) e−k, eik ek, e−ik

D+
2 (2nd quadrant) ek, eik e−k, e−ik

D−1 (3rd quadrant) ek, e−ik e−k, eik

D−2 (4th quadrant) e−k, e−ik ek, eik

Table 2.1: The asymptotic behaviour of basic exponential
functions as k →∞ in a subset of each quadrant of C.

functions in θ1 as well to conclude our proof.

Corollary 4. Let Z(∆1), Z(∆2), Z(a`bqcrds), Z(α`βqκrδs) ⊆ Ξ for all `qrs ∈

Sym({1, 2, 3, 4}) (see (2.3.7) for definitions). Then, {a`bqcrds : `qrs ∈

Sym({1, 2, 3, 4})} ∪ {∆1} and {α`βqκrδs : `qrs ∈ Sym({1, 2, 3, 4})} ∪ {∆2}

are each a Θl equivalence class for l = 1, 2, 3, 4.

Proof. Observe that for all `qrs ∈ Sym({1, 2, 3, 4}),

a`bqcrds = k6φ1 (k)ψ1 (−k)φ2

((
S1

S2

) 1
4

k

)
ψ2

(
−
(
S1

S2

) 1
4

k

)
,

α`βqκrδs = k6Φ2 (k) Ψ2 (−k) Φ1

((
S1

S2

) 1
4

k

)
Ψ1

(
−
(
S1

S2

) 1
4

k

)
,

for some φ1, ψ1,Φ1,Ψ1 ∈ θ1 and φ2, ψ2,Φ2,Ψ2 ∈ θ2. Lemma 3 implies that

θ1, θ2 are each a Θ` equivalence class for ` = 1, 2, 3, 4. Therefore,

a`bqcrds = Θ`

[
k6θ+

1 (k) θ+
1 (−k) θ+

2

((
S1

S2

) 1
4

k

)
θ+

2

(
−
(
S1

S2

) 1
4

k

)]
,

α`βqκrδs = Θ`

[
k6θ+

2 (k) θ+
2 (−k) θ+

1

((
S1

S2

) 1
4

k

)
θ+

1

(
−
(
S1

S2

) 1
4

k

)]
.

Clearly ∆1 and ∆2 will each behave like their constituent terms.
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Observe from (2.3.6) that K
(m)
7 only appears in the term a

(m)
4 . Therefore,

the coefficient of K
(m)
7 in u

(m)
0 (k; 1, L) has magnitude

∣∣∣∣∣∣ 1

∆1(k)

∑
qrs∈Sym({1,2,3})

bqcrds

∣∣∣∣∣∣ 6 1

|∆1(k)|
∑

qrs∈Sym({1,2,3})

|bqcrds|.

Corollary 4 implies that for k in each region C ∈ C, and for each `qrs ∈

Sym({0, 1, 2, 3}), there exists some positive constant F`qrs such that |∆1(k)| >

F`qrs|a`bqcrds| for |k| sufficiently large. Therefore, we have that

|∆1(k)| > |a0|
∑

qrs∈Sym({1,2,3})

F0qrs|bqcrds|

> |a0| min
qrs∈Sym({1,2,3})

(F0qrs)
∑

qrs∈Sym({1,2,3})

|bqcrds|.

This implies that ∃F > 0 such that for k ∈ C ∈ C and |k| sufficiently large,

∣∣∣∣∣∣ 1

∆1(k)

∑
qrs∈Sym({1,2,3})

bqcrds

∣∣∣∣∣∣ 6 1

F

∣∣∣∣ 1

a0

∣∣∣∣,
which implies that the coefficient behaves like O`(1/a0) for ` = 1, 2, 3, 4.

Examination of the coefficients of the spectral interface functions in (2.3.4a)

reveals that k3a0, k2a1, ka2, and a3 have the same asymptotic behaviour,

which is O`(1/θ+
1 (k)). Through similar methods, we determine that the

coefficient of each of K
(m)
7 to K

(m)
14 in the spectral functions behaves like

K
(m)
7 : O`

(
1

θ+
1 (k)

)
, K

(m)
8 : O`

(
1

θ+
2 (k)

)
,

K
(m)
9 : O`

(
1

θ+
1 (−k)

)
, K

(m)
10 : O`

(
1

θ+
2 (−k)

)
,

K
(m)
11 : O`

(
1

/
θ+

2

((
S1

S2

) 1
4

k

))
, K

(m)
12 : O`

(
1

/
θ+

1

((
S2

S1

) 1
4

k

))
,

33



Chapter 2. Solving for the Kinematics 34

K
(m)
13 : O`

(
1

/
θ+

2

(
−
(
S1

S2

) 1
4

k

))
, K

(m)
14 : O`

(
1

/
θ+

1

(
−
(
S2

S1

) 1
4

k

))
,

(2.3.8)

for ` = 1, 2, 3, 4. Next, consider the definitions of ĥ(k; 1) and ĥ(k; 2) in

(2.2.6a). Perform integration by parts to get

ĥ(k; 1) =
i

k

(
e−iLkh(L)− eikh(−1)

)
+
i

k

∫ L

−1

e−ikxhx(x)dx,

ĥ(k; 2) =
i

k

(
e−ikh(1)− e−iLkh(L)

)
+
i

k

∫ 1

L

e−ikxhx(x)dx.

Recall that L ∈ (−1, 1). We re-express the integrals as

∫ L

−1

e−ikxhx(x)dx =


e−iLk

∫ L

−1

e−ik(x−L)hx(x)dx, if k ∈ closC+,

eik
∫ L

−1

e−ik(x+1)hx(x)dx, if k ∈ C−,

∫ 1

L

e−ikxhx(x)dx =


e−ik

∫ 1

L

e−ik(x−1)hx(x)dx, if k ∈ closC+,

e−iLk
∫ 1

L

e−ik(x−L)hx(x)dx, if k ∈ C−.

The asymptotic behaviour of the integrals in the various cases are o(1) by the

Riemann–Lebesgue lemma. The solution function h is necessarily bounded.

Therefore, with reference to Table 2.1, we conclude that for L ∈ (−1, 1),

ĥ(k; 1) = O1

(
e−iLk

k

)
,O2

(
e−iLk

k

)
,O3

(
eik

k

)
,O4

(
eik

k

)
,

ĥ(k; 2) = O1

(
e−ik

k

)
,O2

(
e−ik

k

)
,O3

(
e−iLk

k

)
,O4

(
e−iLk

k

)
. (2.3.9)

This holds even if h(−1), h(L) or h(1) equals zero since a smaller integra-

tion interval will not change our upper bound. By the same analysis and
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given that g is also bounded, ĝ(k; 1) and ĝ(k; 2) have the same asymptotic

behaviour as ĥ(k; 1) and ĥ(k; 2) respectively.

Finally, we consider the three terms in each of K
(m)
7 and K

(m)
8 that

contain ĥ. We ignore the factors eΩ
(m)
n tΩ

(m)
n because they will be cancelled

out upon substitution into the Ehrenpreis form (see (2.2.9) and (2.2.7)).

The asymptotic behaviours of ĥ(k; 1) and ĥ(k; 2) are given by (2.3.9). For

the remaining four terms, we use (2.3.9) and the fact that the regions D±m

have 4-fold rotational symmetry about the origin to get

ek(i−1)ĥ(−ik; 1) = O2

(
e−(L+1)keik

k

)
,O3

(
e−(L+1)keik

k

)
,O4

(
eik

k

)
,O1

(
eik

k

)
,

ek(1+i)ĥ(ik; 1) = O4

(
e(L+1)keik

k

)
,O1

(
e(L+1)keik

k

)
,O2

(
eik

k

)
,O3

(
eik

k

)
,

ek(1−i)ĥ(−ik; 2) = O2

(
e−ik

k

)
,O3

(
e−ik

k

)
,O4

(
e(1−L)ke−ik

k

)
,O1

(
e(1−L)ke−ik

k

)
,

e−k(i+1)ĥ(ik; 2) = O4

(
e−ik

k

)
,O1

(
e−ik

k

)
,O2

(
e−(1−L)ke−ik

k

)
,O3

(
e−(1−L)ke−ik

k

)
.

(2.3.10)

From (2.3.8), the coefficients of K
(m)
7 and K

(m)
8 behave like O`(1/θ+

1 (k))

and O`(1/θ+
2 (k)) respectively. Compare the asymptotic behaviours given

by lemma 3 with those given by (2.3.9) and (2.3.10). We conclude that

the terms that contain ĥ in K
(m)
7 and K

(m)
8 all decay like O`(k−1) upon

substitution into the Ehrenpreis form, for ` = 1, 2, 3, 4. Since ĝ lacks a

factor of Ω
(m)
n ∝ k2 compared to ĥ, the terms that contain ĝ in K

(m)
7 and

K
(m)
8 decay like O`(k−3). We repeat this analysis with K

(m)
9 to K

(m)
14 and

find that every term that contains ĥ or ĝ in the Ehrenpreis form decays.

This completes our Jordan-lemma-Cauchy-theorem argument. Eliminating

ĥ and ĝ from each of K
(m)
7 to K

(m)
14 gives the final solution representation.
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We have achieved a model of the kinematics with minimal assumptions.

The UTM usually includes a Stage 3 to verify that the solution satisfies the

problem, but we will omit it due to space constraints. Nonetheless, we will

include a short section to justify the removal of the open discs.

2.3.2 Justifying the removal of the open discs

At the end of Stage 1, we preemptively removed an open disc R(ξ,M)

around each zero (and its rotations) of the exponential polynomials specified

in lemma 3 and corollary 4. We constructed every open disc with some fixed

radius M . This, however, may result in us attempting to remove an infinite

region from D±m in (2.2.8), which would require a Jordan-lemma-Cauchy-

theorem argument similar to those used to justify the contour deformations.

Fortunately, we have from [10] that the zeros of our exponential polynomials

are isolated, so we can construct and remove such open discs.

Suppose we remove R(ξ,M) around some ξ ∈ D±m. Then, we will need

to consider integrals over ∂R(ξ,M) with integrands that contain e−Ω
(m)
n t. If

ξ is at infinity, then our definitions of the regions (2.2.8) imply that e−Ω
(m)
n t,

and consequently the integral, will diverge. This is especially problematic

since Ξ is countably infinite. Thus, we require the zeros to asymptotically

approach the real or imaginary axis as e−Ω
(m)
n t is bounded along the axes.

Langer [9, Theorem 8] provides an elegant method to approximate the

asymptotic location of the zeros of complex exponential polynomials. First,

collect the power of each exponential term and take its conjugate. Next,

plot the conjugate powers on the complex plane and construct a convex hull

around the resultant shape. The zeros at infinity are confined “to a finite

number of strips each of asymptotically constant width”, and the strips are
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Figure 2.2: Each colour indicates a set of conjugate powers
collected from ∆1(k) (top) or ∆2(k) (bottom), after cancel-
lation with the numerator, for particular values of S1/S2

and L. Observe that the convex hull for each of these sets of
points is rectangular. The points in grey show the conjugate

powers for S1/S2 ∈ [0.2, 5] and L ∈ (−1, 1).

asymptotically perpendicular to a side of the convex hull. In our case, for

L ∈ (−1, 1) and S1, S2 ∈ R+, the convex hull is always a rectangle (see

Figure 2.2 and our online appendix5). Unfortunately, this is insufficient

since we require there to be exactly one strip centered on each axis with a

width that converges to zero. Nonetheless, Langer’s method can be paired

with numerical analysis to demonstrate that the zeros behave as desired.

Locating the zeros of exponential polynomials for a general UTM procedure

remains an open problem in the literature. Mathematicians have had to

employ ad hoc analytic methods (see [11] for another example; it also uses

results from [9]) and/or numerical analysis.

5The Jupyter Notebook can be found here: https://tinyurl.com/capstoneDH.
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Chapter 3

Further Analysis

In this final chapter, we will discuss the applications of our kinematics

model to the flapping plate/fish tail problem. Our UTM-produced model

has two unique strengths. First, every integral in the solution representa-

tion (2.2.9) convergences uniformly [11, p. 4]. Second, the Jordan-lemma-

Cauchy-theorem argument remains a powerful analytic tool.

Let us consider the question of whether the kinematics are simple har-

monic. If there exists some positive constant F such that h = −Fhtt, then

h is simple harmonic. This approach requires that we determine htt. First,

note that P̃ (m), u
(m)
0 , u

(m)
1 , u

(m)
2 , u

(m)
3 multiplied by e−Ω

(m)
n t and with inte-

gration bounds (t, T ) instead of (0, t) (see (2.2.6b) for definitions), each has

the form

∫ T
t

eΩ
(m)
n (s−t)φ(λ, s)ds. Integration by parts gives

∫ T
t

eΩ
(m)
n (s−t)φ(λ, s)ds =

1

Ω
(m)
n

(
eΩ

(m)
n (T −t)φ(λ, T )− φ(λ, t)

−
∫ T
t

eΩ
(m)
n (s−t) (∂sφ(λ, s)) ds

)
=⇒

∣∣∣∣∫ T
t

eΩ
(m)
n (s−t)φ(λ, s)ds

∣∣∣∣ = O
(
k−2)

as k →∞ within closD+
m. Through the same arguments as for the contour

deformations, we can replace the integration bound in each term with (0, T ).

With this change, the t-dependence in the solution representation comes
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solely from the exponential factors e−Ω
(m)
n t. Given uniform convergence,

twice differentiating h with respect to t simply multiplies each integrand

by (Ω
(m)
n )2 = −(µSn)k4. The resultant integrals are difficult to evaluate,

but no more difficult than the originals. Iff the integrals that pertain to

each interval (see (2.2.9)), evaluates to the same limit but with a factor of

1/S1 or 1/S2 respectively, despite its integrand having been multiplied by

k4, then h is simple harmonic with F = µ. Relatedly, we can examine the

accuracy of the approximation by considering minF∈R+ ‖Fh+ htt‖.

If h0 ≡ g0 ≡ 0, we do not expect h(x, 1/ω) = g(x, 1/ω) = 0, where ω

is the frequency of the driver. In fact, a characteristic of hyperbolic PDEs

is that perturbations propagate at finite speed [4, §2.3]. Thus, another ap-

proach is to hypothesise that h = H+o(t), where H is simple harmonic and

the remainder converges uniformly in x. We expect at least some compo-

nent of our initial condition to be in the remainder. Yet, a Jordan-lemma-

Cauchy-theorem argument will not work since e−Ω
(m)
n t diverges as k → ∞

in D±m. In fact, for t sufficiently large, e−Ω
(m)
n t will overpower any decay in

the other exponential terms since their powers are bounded.

Lastly, we consider S2/S1 large and L→ −1 which, by Moore’s hypoth-

esis, should result in maximum thrust. Observe then that in D±m, either

2e
i
(

S2
S1

) 1
4 k

(
S2

S1

) 3
4

k3u
(m)
0 (k; 2,−1) or −2e

−i
(

S2
S1

) 1
4 k

(
S2

S1

) 3
4

k3u
(m)
0 (k; 2,−1)

from κ
(m)
4 and δ

(m)
4 (2.3.6) respectively, both of which pertain to n(x) = 2,

will be dominant. This is especially true upon substitution into the Ehren-

preis form (2.2.9). Since u
(m)
0 (k; 2,−1) represents the driver, this result

may indicate that these parameters maximise the effect of the driver on the

kinematics which results in maximal generation of thrust.
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