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Chapter 0

The Unified Transform Method

The object of this paper is to study interface problems for partial dif-

ferential equations, particularly the Linear Schrödinger and Linearised

Korteweg-de Vries equations, and derive solution representations for them.

The Unified Transform Method will be integral to this study and deriva-

tion since classical methods are unable to do the same. This chapter out-

lines the problem we are interested in, the method we will use to study

this problem, and the organisation of this paper for this study.

0.1 Introduction

Interface problems for dispersive partial differential equations (PDEs) are

a class of initial boundary value problems (IBVPs) where the solution of

a dispersive equation in one domain prescribes boundary conditions for

the equations in adjacent domains (Pinsky, 2011). Such problems model

various physical phenomenon across quantum mechanics, heat flow, and

physics: some dispersive equations this paper in particular will touch on.

These problems, however, rarely allow for explicit closed-form solutions
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with uniform convergence at the boundaries. Additionally, such prob-

lems cannot generally be solved using classical analytic Fourier methods,

especially for dispersive equations of higher spatial order.

0.1.1 Dispersive Wave Equations

A time-dependent, scalar, linear partial differential equation with con-

stant coefficients on an unbounded space domain admits the following

plane wave solutions: u(x, t) = ei(kx+ωt), k ∈ R, where k is the wavenum-

ber and ω is the frequency. Since not all values of k can be taken in the

plane wave solutions for each value of ω, the linear PDE imposes a dis-

persion relation ω = ω(k) (Trefethen, 1994). Wave equations with such

dispersive relations, which therefore disperse different wavelengths at

different phase velocities over time in some spatial domain, are disper-

sive wave equations. In this paper, we will study two dispersive wave

equations, namely:

Linear Schrödinger Equation (LS)

The linear Schrödinger equation is a linear partial differential equation

that models the wave function of a quantum-mechanical system. The full

problem we are interested in is outlined in Section 3.1 but the equation of

interest is

[∂t + i∂xx]q(x, t) = 0.
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Linearised Korteweg-de Vries Equation (LKdV)

The linearised Kortweg-de Vries equation is the linear form of the non-

linear Kortweg-de Vries equation, which models shallow water waves

and is an actively studied PDE. The full problem we are interested in is

outlined in Section 4.1 but the equation of interest is:

[∂t − ∂xxx]q(x, t) = 0 =⇒ [∂t + i(−i∂xxx)]q(x, t) = 0.

Note that both of the equations of interest involve the imaginary unit i.

0.1.2 Interface Problems

Interface problems involve boundary conditions for equations in adja-

cent domains prescribed by equation solutions in a given domain. For

example, a network of interconnected rods on which heat flow is mod-

elled (Sheils and Smith, 2015). Determining the well-posedness of such

problems is a non-trivial issue and boundary conditions must be derived

to be imposed at the interface. This is beyond the scope of this paper

and imposed boundary conditions will be stated as part of the problem

definition. We will study interface problems for PDEs involving the two

dispersive wave equations described above.

0.2 The Inadequacy of Classical Methods

Our study, which involves interface problems for dispersive wave equa-

tions, does not lend itself to easy analysis using classical methods. This is
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only true for the LKdV equation, which is of a higher spatial order than

manageable for most classical transforms (> 2). Primarily, classical meth-

ods involve the separation of variables and application of classical trans-

form pairs such as the Fourier transforms, which include the sine, cosine,

and other transforms (Fokas and Smith, 2016). These pairs are often de-

duced by inspecting the PDE but can be systematically derived for some

IBVPs using Green’s functions but, crucially, not for all of them. Consider

the solution via sine transform pairs for the heat equation (∂t − ∂xx = 0)

on the half-line:

u(x, t) =
2
π

∫ ∞

0
sin(λx)e−λ2t

[∫ ∞

0
sin(λs)u0(s)ds + λ

∫ t

0
eλ2τg0(τ)dτ

]
dλ,

(1)

where 0 < x < ∞, t > 0, u0 is the initial datum (u(x, 0) = u0), and g0 is

a boundary datum. Note that the problem has a separable solution form

(u(x, t) = X(x)T(t)) in functions of x and t as follows:

X′′

X
=

T′

T
.

Rewriting these as ODEs after equating the constant ratios above with

−λ2 gives us X′′(x) + λ2X(x) = 0 and T′(t) + λ2T(t) = 0. The particu-

lar solutions for these ODEs are eiλx and −λ2t. From the separable solu-

tion form (u(x, t) = X(x)T(t)), we can infer that a particular solution for

the heat equation is given by U(λ)eiλx−λ2t which is the same as stating

u(x, t) =
∫

U(λ)eiλx−λ2tdλ. The Ehrenpreis principle allows that the so-

lution for this formulation of the heat equation can indeed be expressed

in this way, the intuition being that we integrate the solutions across the
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λ domain to approach a general solution.

Notice that the solution representation in (1) is not of this convenient

Ehrenpreis form. Since sin(λx) = 0 when x = 0, it is also not apparent

if u(0, t) = g0(t). The integral at x = 0 also cannot be freely swapped

for limx→0 of the integral because sin 0 = 0. Thus, (1) is not uniformly

convergent at x = 0 unless the boundary condition is homogeneous. The

lack of uniform convergence means that numerical evaluation of (1) is in-

feasible. In fact, most classical methods are defined for the homogeneous

cases of inhomogeneous problems and suffer the same drawback. This

especially complicates the study of the higher order, dispersive equa-

tions whose solutions we must numerically evaluate to model. This is

assuming we have found the correct transform to use, which in itself is a

computationally expensive and laborious task (Smith, 2019).

But now consider the Fourier transform pair solution to the initial

value problem (not IBVP) of the heat equation:

u(x, t) =
1

2π

∫ ∞

−∞
eiλx−λ2tû0(λ)dλ, (2)

where −∞ < x < ∞, t > 0, and û0 is the Fourier transform of the initial

datum u0. We observe that this is of the Ehrenpreis form described, with

a specified contour and function U(λ). If we could replicate this solution

form in a way that were uniformly convergent, of the Ehrenpreis form,

and standard enough to avoid having to guess the correct transform, we

would much more easily be able to study interface problems for disper-

sive wave equations. This is why we use the Unified Transform Method.
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0.3 The Unified Transform Method

The Unified Transform Method (UTM), a relatively new transform (Fokas,

1997), extends and augments the classical transform approaches by work-

ing towards the synthesis, rather than separation, of variables. Through

the use of tools from complex analysis, linear algebra, real analysis, and

classical methods such as Fourier transforms, the UTM has been proven

to yield explicit solution representations that are uniformly convergent,

hence producing new solution formulae for problems already solved by

classical methods and even producing formulae for problems with no

classical approach (Sheils, 2015). This method enables us to study in-

terface problems for dispersive wave equations where classical methods

would fail to. Its implementation can be broken down into three stages

(Smith, 2019), as detailed below and followed for the rest of this paper.

More generalised frameworks also exist (Deconinck, Trogdon, and Vasan,

2014; Fokas and Pelloni, 2015; Fokas, 2008).

0.3.1 Stage I

Assume that the given problem has a solution. Then work to derive:

Global Relation

A relation of the eventual solution to the boundaries of the space-time

domain, derived from an application of Green’s theorem to a so-called

local relation (Deconinck, Trogdon, and Vasan, 2014).
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Ehrenpreis Form

A representation of the eventual solution in terms of complex contour

integrals of initial datum and boundary value transforms

0.3.2 Stage II

Hold assumption that solution exists. Construct a Data to Unknown map

to cast unknown terms in terms of the problem data. Then use the global

relation derived in Stage I and boundary values defined to substitute in

the Ehrenpreis form. This gives us a unique integral representation of the

solution defined only with problem data.

0.3.3 Stage III

Having found a unique solution representation, we work to prove exis-

tence. This is straightforward in principle and involves treating the so-

lution representation from Stage II as a function where we show that q

satisfies our representation. This proves existence.

0.4 Organisation of Paper

This paper is organised into four chapters:

1. Chapter 1 introduces the various mathematical tools, ranging from

complex analysis to linear algebra, that will be employed in the im-

plementation of the three-stage UTM described above.
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2. Chapter 2 demonstrates an outline implementation of the UTM for

the half-line Dirichlet heat problem in the non-interface or two-

point case. This chapter sketches all three stages to demonstrate

a successful UTM solution to a canonical PDE.

3. Chapter 3 extends the UTM to the simple interface LS problem in-

volving an interface with three domains. The first two stages of the

UTM are implemented, with the third stage outside of the scope of

this paper.

4. Chapter 4 extends the UTM to the simple interface LKdV problem

involving an interface with three domains. The first two stages of

the UTM are implemented, with the third stage outside of the scope

of this paper.

5. Chapter 5 briefly concludes and describes next steps for this study.
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Chapter 1

Toolkit

A successful application of the UTM requires the use of several tools to

work with. This chapter outlines these tools for later reference.

1.1 Fourier Transforms

Definition 1.1.1 (Fourier Transform) For some complex-valued function f (x),

x ∈ R, the Fourier transform f̂ (λ) is given by

f̂ (λ) =
∫ ∞

−∞
f (x)e−iλxdx,

for λ ∈ C

Definition 1.1.2 (Inverse Fourier Transform) For some complex-valued Fourier

Transform f̂ (λ), λ ∈ C, the inverse Fourier transform of f̂ (λ) is, for x ∈ R,

f (x) =
1

2π

∫ ∞

−∞
f̂ (λ)eiλxdx.
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1.2 Real Analysis

Definition 1.2.1 (Uniform Convergence) A sequence of functions fn : X →

Y converges uniformly if ∀ε > 0, ∃Nε ∈ N such that ∀n ≥ Nε and ∀x ∈ X

one has | fn(x)− f (x)| < ε.

Theorem 1.2.1 (Uniform Convergence in Derivatives) Let fn : [a, b] →

R be a sequence of differentiable functions whose derivatives f ′n are continuous.

If fn converges uniformly to f and f ′n converges uniformly to g, then the limit f

is differentiable and its derivative is f ′ = g. That is to say,

lim
n→∞

d fn(x)
dx

=
d limn→∞ fn(x)

dx
.

Theorem 1.2.2 (Ehrenpreis’s Fundamental Principle) Every solution of a

system of homogeneous partial differential equations with constant coefficients

can be represented as the integral with respect to an appropriate Radon measure

over the complex characteristic variety of the system (Farkas et al., 2013).

Remark 1 The Ehrenpreis Fundamental Principle is a result from analysis with

a more complicated statement as well as an accompanying, more rigorously-

proven theorem (Ehrenpreis-Palamodov Theorem). For our purposes, the state-

ment above conveys the important fact that solutions of well-posed homogeneous

linear PDEs with constant coefficients can be expressed in the form of a contour

integral that involves particular solutions across some complex variable domain

(since the Principle applies to bounded, smooth, convex, domains).
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1.3 Complex Analysis

Theorem 1.3.1 (Cauchy’s Integral Theorem) (Asmar and Grafakos, 2018)

Let U ⊆ C be a simply connected open set, and let f : U → C be a holomorphic

(or complex analytic) function. Let γ : [a, b] → U be a smooth closed curve.

Then, ∮
γ

f (z)dz = 0.

Theorem 1.3.2 (Jordan’s Lemma) If V ⊆ C is an open set, ∀R > 0, V ∩

B(0, R) is the union of finitely many simply connected regions, let C±R :=

C(0, R) ∩ (V ∩C±) and if ( f : clos(V)→ C) is continuous with

lim
R→∞

(max{ f (λ) : λ ∈ C±R }) = 0,

then, ∀a > 0,

lim
R→∞

∫
C±R

e±iaλ f (λ)dλ = 0.

Corollary 1.3.2.1 If f : U → C is analytic, U is open and simply connected

set containing clos(V), and f (λ) → 0 uniformly in arg(λ) as λ → ∞ within

clos(V), then, ∀a > 0,

lim
R→∞

∫
∂V∩B(0,R)∩C±

e±iaλ f (λ)dλ = 0.
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1.4 Linear Algebra

Theorem 1.4.1 (Cramer’s Rule) Suppose that Ax = b is a system of linear

equations where A is an n× n matrix and

x =



x1

x2

...

xn


b =



b1

b2

...

bn


.

Let Aj denote the matrix that is obtained by taking the jth column of A and

replacing it with the column matrix b. If det(A) 6= 0, then the system has a

unique solution given by

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)
.



13

Chapter 2

The Heat Equation

2.1 A Summary of the UTM in Practice

In this chapter, we briefly go though a full implementation of the UTM

on the heat equation. The aim is to help the reader familiarise with the

main components of the UTM in this two-point case before a more thor-

ough implementation (up to Stage II) in the interface problems for LS and

LKdV. This is an outline with most working excluded.

2.2 Defining the Problem

10

q(x, t)

FIGURE 2.1: Spatial Domain for (Half-Line) Heat Problem

We are interested in applying the UTM to analyse the Half-Line Dirich-

let Heat Problem, which is defined by the following Partial Differential

Equation (PDE), an Initial Condition (IC), and two Boundary Conditions
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(BC(1) and BC(2)).

[∂t − ∂xx]q(x, t) = 0 (2.PDE)

q(x, 0) = q0(x) (2.IC)

q(0, t) = g0 (2.BC (1))

q(1, t) = g1 (2.BC (2))

2.3 Stage I

2.3.1 Global Relation

We now proceed to explore the first part of Stage I of the UTM, where we

seek to use the (2.PDE) and the (2.IC) to extract a Global Relation from

the Problem as stated. Assuming ∃q : [0, 1] × [0, T] satisfying the PDE

and IC, we apply the Fourier transform to both sides of the PDE and then

intergate by parts. This gives us an ODE which we can integrate in t to

solve for q̂(λ; t). This is done below.

0 = eλ2tq̂(λ; t)− q̂0(λ; 0) +
∫ t

0
eλ2s (∂xq(0, s) + iλq(0, s)) ds

− e−iλ
∫ t

0
eλ2s (∂xq(1, s) + iλq(1, s)) ds (2.1)

For convenience, we denote the above using the following notation (which

will be analysed later in the method as well and is of importance).

f j(λ; X; t) :=
∫ t

0
eλ2s∂

j
xq(X, s)ds (2.2)
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so that (2.1) is written as

q̂0(λ)− eλ2tq̂(λ; t) = iλ f0(λ; 0; t) + f1(λ; 0; t)

− e−iλ( f1(λ; 1; t) + iλ f0(λ; 1; t)) (2.GR)

Equation (2.GR) above is the global relation.

2.3.2 Setting Up Contours

Having derived a global relation from the PDE and IC, we now work to

set up contours in the complex plane as a first step to derive the Ehren-

preis form equation, which will be crucial in deriving our final solution

representation. First, however, we solve for q(x, t) in order to set up the

integrals for contour deformation in the complex plane. We achieve this

with an inverse Fourier transform to the global relation.

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂(λ)dλ

−
∫ ∞

−∞
eiλx−λ2t(iλ f0(λ; 0; t) + f1(λ; 0; t))dλ (2.3)

+
∫ ∞

−∞
eiλ(x−1)−λ2t( f1(λ; 1; t) + iλ f0(λ; 1; t))dλ (2.4)

Now, our aim is to deform the latter two contours of integration from

the above ((2.3) and (2.4)) away from R. In order to accomplish this, we

first define the closed sectors within the complex plane that we seek to

deform these contours within.

Definition 2.3.1 (Closed Sectors of Interest)
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C± := {λ ∈ C : ±=(λ) > 0}

D := {λ ∈ C : <(λ2) < 0}, D± := D ∩C±

E := {λ ∈ C : <(λ2) > 0}, E± := E ∩C±

<{λ}

={λ}

∂D+

D+

D−
∂D−

E+ E+

E− E−

π
2

π
2

FIGURE 2.2: Closed Sectors for Contour Deformation (Heat
Equation)

Analytically, by studying the equation introduced in (2.2), we find that

e−λ2t(iλ f j(λ; X, t) + λ f j(λ; X, t)) = O(|λ−2|) uniformly in arg(λ) as λ→

∞ within clos(E). This decay satisfies the conditions for an application of

Jordan’s Lemma to the integrands we are interested in. By Jordan’s Lemma

∫
∂E+

eiλx−λ2t (iλ f0(λ; 0, t) + f1(λ; 0, t)) dλ = 0

Substituting this implication back into our inverse Fourier transform rep-

resentation of q(x, t) by altering (2.3) and (2.4) (we subtract
∫

D± from
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these integrals) gives us the following.

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂(λ)dλ

−
∫

∂D+
eiλx−λ2t(iλ f0(λ; 0; t) + f1(λ; 0; t))dλ

−
∫

∂D−
eiλ(x−1)−λ2t( f1(λ; 1; t) + iλ f0(λ; 1; t))dλ, (2.EFt)

valid for (x, t) ∈ (0, 1) × [0, T]. We have thus arrived at the Ehrenpreis

Form in t for the Heat Equation and have concluded Stage I of the UTM.

It is possible, and preferable, to express (2.EFt) in terms of some τ, ∀τ ∈

[t, T]. We do this by employing a similar argument to our application of

Jordan’s Lemma previously. This is outlined in Appendix A.

2.4 Stage II

2.4.1 Summary

In Stage II, we incorporate the boundary conditions ((2.BC (1)) and (2.BC (2)))

into the global relation we derived. We then take advantage of the fact

that f j(λ; X, τ) depends on λ entirely through λ2 in eλ2τ to set up a lin-

ear system of two equations in two unknowns. We take eλ2τ q̂(λ; τ) to be

"known" until we vanish terms containing it later. After using Cramer’s

rule, we vanish eλ2τ q̂(λ; τ) terms by analytically showing decay in those

terms and applying Jordan’s lemma. This gives us the solution represen-

tation for the heat equation using the UTM:
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2.4.2 Solution Representation

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂(λ)dλ

−
∫

∂D+
eiλx−λ2t

(
(iλh0(λ; τ) +

ζ+(λ; M(·; τ) + q̂0)

∆(λ)

)
dλ

−
∫

∂D−
eiλ(x−1)−λ2t

(
(iλh1(λ; τ) +

ζ−(λ; M(·; τ) + q̂0)

∆(λ)

)
dλ

(2.SRTτ)

Where hj, M, q̂0, ζ± are explicitly defined in the problem data. ζ± re-

fer to the Cramer rule representations of the unknowns, and ∆(λ) is the

determinant of the system.

2.5 Stage III

Having derived a solution representation, we define q(x, t) using (2.SRTτ)

and verify if it indeed solves the problem we defined in Stage I by check-

ing if it satisfies the PDE, IC, and BCs.

2.5.1 PDE

Any (x, t) ∈ (0, 1)× (0, T) has a closed neighbourhood Ω within (0, 1)×

(0, T) such that eiλx′−λ2t′ → 0 exponentially uniformly on (x′, t′) ∈ Ω as

λ → ∞ along R or ∂D±. Therefore, all partial derivatives of q exist and

are given by differentiating the integrand. Taking the derivative terms as

defined in (2.SRTτ) above and integrating therefore does satisfy the PDE.
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2.5.2 Initial Condition

We aim to isolate the initial conditions from our (2.SRTτ). Before we ac-

complish this, note that ∀T ∈ (SRT), T can be replaced by τ, ∀τ ∈ [t, T].

So, q is equivalently defined by both (SRT) and ((2.SRTτ)). When we set

τ = t and t = 0, hj(λ; 0) = 0 =⇒ M(λ; 0) = 0. Thus vanish these terms

and we are left with a solution representation in terms of q̂0 which we

reduce to an inverse Fourier transform using Jordan’s lemma.

=⇒ 2πq(x, 0) = q0(x), ∀x ∈ (0, 1)

We have thus shown that (2.SRTτ) does satisfy (2.IC).

2.5.3 Boundary Conditions

Demonstrating a full implementation of Stage III is beyond the scope of

this paper, but for the heat equation this involves the setting up of a series

representation of the solution. We then check if the solution satisfies ho-

mogeneous and inhomogeneous boundary conditions using this series

representation and construct an inverse Fourier transform of a fourier

transform for the latter (Smith, 2019).

We have demonstrated that the solution representation satisfies the PDE

and IC. In addition, it has been shown in Appendix Appendix A that

it satisfies the BCs as well. In conclusion, the solution representation

solves the problem defined and we have successfully employed the UTM

to solve the heat equation.
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Chapter 3

The Linear Schrödinger Equation

3.1 Defining the Problem

L3
L1 0

q[3]

0 L2

q[1] q[2]

FIGURE 3.1: Simple Interface Domain with Single Interface

We are interested in applying the UTM to analyse the Time-Dependent,

Zero Potential Linear Schrödinger Equation, which is defined by the fol-

lowing Partial Differential Equation (PDE), an Initial Condition (IC), and
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two Boundary Conditions (BC(1) and BC(2)). We will study this equa-

tion across a simple interface problem involving one interface and three

domains. This involves conditions for continuity at the interface (Conti-

nuity) and conservation of flux at the interface (Conservation).

[∂t − i(−∂xx)]q[j](x, t) = 0 (3.PDE)

q[j](x, 0) = q[j]0 (x) (3.IC)

q[1](0, t) = 0 (3.BC (1))

q[2](L2, t) = 0 (3.BC (2))

q[1](L1, t) = q[2](0, t) = q[3](0, t) = q[3](L3, t) (3.Continuity)

∂xq[1](L1, t) + ∂xq[3](L3, t) = ∂xq[2](0, t) + ∂xq[3](0, t) (3.Conservation)

Figure 3.1 is the physical domain for which the problem is defined.

3.1.1 Preliminary Work

First, we investigate the Fourier transform ·̂ with i d2

dx2 on C∞[0, Lj].

(
i d

dx

)2
φ(λ)

∧

= i
∫ Lj

0
e−iλxφ′′(x)dx

Integrating the above by parts in x

= i
(
[e−iλx(φ′(x) + iλφ(x))]

x=Lj
x=0 − λ2

∫ Lj

0
e−iλxφ(x)dx

)
= i
(
(e−iλLj(φ′(Lj) + iλφ(Lj)))− (φ′(0) + iλφ(0))− λ2φ̂(λ)

)
= e−iλLJ

(
iφ′(Lj)− λφ(Lj)

)
−
(
iφ′(0)− λφ(0)

)
− iλ2φ̂(λ)
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3.2 Stage I

3.2.1 Global Relation

We now proceed to explore the first part of Stage I of the UTM, where we

seek to use the (3.PDE) and the (3.IC) to extract a Global Relation from

the problem as stated. Assuming ∃q[j] : [0, Lj]× [0, T] satisfying the PDE

and IC, we apply the Fourier transform to both sides of the PDE:

0 = [∂t + i∂xx]
∧

q[j](λ; t)

= ∂t

∧
q[j](λ; t) + i∂xx

∧
q[j](λ; t)

=
d
dt

q̂[j](λ; t) + e−iλLj(iφ′(Lj)− λφ(Lj))− (iφ′(0)− λφ(0))− iλ2φ̂(λ)

=

[
d
dt
− iλ2

]
q̂[j](λ; t) + e−iλLj(i∂xq[j](Lj, t)− λq[j](Lj, t)) (3.1)

− (i∂xq[j](0, t)− λq[j](0, t))

We multiply both sides by the Integrating Factor e−iλ2t

=
d
dt

[
e−iλ2tq̂[j](λ; t)

]
+ e−iλLj−iλ2t(i∂xq[j](Lj, t)− λq[j](Lj, t))

− e−iλ2t(i∂xq[j](0, t)− λq[j](0, t)) (3.2)

Where equation (3.2) above is an ODE. We integrate the above in t and

use the IC to solve the ODE for q̂[j](λ; t).

0 = e−iλ2tq̂[j](λ; t)− q̂[j]0 (λ; 0) + e−iλLj

∫ t

0
e−iλ2s(i∂xq[j](Lj, s)

− λq[j](Lj, s)ds−
∫ t

0
e−iλ2s(i∂xq[j](0, s)− λq[j](0, s))ds (3.3)
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For convenience, we denote the above using the following notation (which

will be analysed later in the method as well and is of importance),

f [j]k (λ; X; t) :=
∫ t

0
e−iλ2s∂k

xq[j](X, s)ds (3.4)

so that (3.3) is written as

q̂0
[j](λ)− e−iλ2tq̂[j](λ; t) = e−iλLj [i f [j]1 (λ; Lj; t)− λ f [j]0 (λ; Lj; t)]

− (i f [j]1 (λ; 0; t)− λ f [j]0 (λ; 0; t)) (3.GR)

valid ∀λ ∈ C, ∀t ∈ [0, T]. Equation (3.GR) above is the global relation.

Note the intervals we are operating in: [0, L1], [0, L2], [0, L3]. We therefore

derive three global relations, one for each j.

3.2.2 Setting Up Contours

Having derived a global relation from the PDE and IC, we now work to

set up contours in the complex plane as a first step to derive the Ehren-

preis form equation, which will be crucial in deriving our final solution

representation. First, however, we solve for q[j](x, t) in order to set up the

equation for contour deformation in the complex plane. We achieve this

with an inverse Fourier transform applied to the global relation. Note:

q̂0
[j](λ)− e−iλ2tq̂[j](λ; t) = (. . . )

=⇒ q̂[j](λ; t) = eiλ2t
[

ˆq[j](λ)− (. . . )
]



Chapter 3. The Linear Schrödinger Equation 24

We apply the inverse Fourier transform to both sides of this rearrange-

ment and so find

2πq[j](x, t) =
∫ ∞

−∞
eiλx+iλ2tq̂0

[j](λ)dλ

−
∫ ∞

−∞
eiλ(x−Lj)+iλ2t(i f [j]1 (λ; Lj; t)− λ f [j]0 (λ; Lj; t))dλ (3.5)

+
∫ ∞

−∞
eiλx+iλ2t(i f [j]1 (λ; 0; t)− λ f [j]0 (λ; 0; t))dλ (3.6)

Now, our aim is to deform the latter two contours of integration from

the above ((3.5) and (3.6)) away from R. In order to accomplish this, we

first define the closed sectors within the complex plane that we seek to

deform these contours into.

Definition 3.2.1 (Closed Sectors of Interest)

C± := {λ ∈ C : ±=(λ) > 0}

D := {λ ∈ C : <(−iλ2) < 0}, D± := D ∩C±

E := {λ ∈ C : <(−iλ2) > 0}, E± := E ∩C±

We now explore the limiting properties of the notation we introduced in

(3.4) as observed in the latter two integrals of (3.5) and (3.6). We do this

by integrating by parts in s.

eiλ2t f [j]k (λ; X, t) =
∫ t

0
eiλ2(t−s)∂k

xq[j](X, s)ds

= iλ−2[eiλ2(t−s)∂k
xq[j](X, s)]s=t

s=0︸ ︷︷ ︸
O(|λ−2|)

− iλ−2
∫ t

0
eiλ2(t−s)∂t∂

k
xq[j](X, s)ds︸ ︷︷ ︸

O(|λ−2|)

= O(|λ−2|), uniformly in arg(λ) as λ→ ∞ within clos(E)
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D+

E+

D−

E−

<{λ}

={λ}

∂D+

∂D−

π
2

π
2

FIGURE 3.2: Closed Sectors for Contour Deformation (LS
Equation)

The above can be applied to find that eiλ2t(i f j(λ; X, t) − λ f j(λ; X, t)) =

O(|λ−1|) uniformly in arg(λ) as λ → ∞ within clos(E). Having shown

that the integrands decay, we are prepared to apply Jordan’s Lemma to

(3.5) and (3.6). By Jordan’s Lemma, for x ∈ (0, Lj),

∫
∂E+

eiλ(x−Lj)+iλ2t(i f [j]1 (λ; Lj; t)− λ f [j]0 (λ; Lj; t))dλ = 0,∫
∂E+

eiλx+iλ2t(i f [j]1 (λ; 0; t)− λ f [j]0 (λ; 0; t))dλ = 0.
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This gives us, for the integral in (3.6)

∫ ∞

−∞
. . . dλ =

∫ ∞

−∞
−
∫

∂E+
. . . dλ =

∫
∂D+

. . . dλ, (3.7)

and, for the integral in (3.5)

∫ ∞

−∞
. . . dλ = −

∫ −∞

∞
. . . dλ

= −
∫ −∞

∞
−
∫

∂E−
. . . dλ = −

∫
∂D−

. . . dλ. (3.8)

Substituting this implication back into our inverse Fourier transform rep-

resentation of q[j](x, t) by altering (3.5) and (3.6) yields

2πq[j](x, t) =
∫ ∞

−∞
eiλx+iλ2tq̂0

[j](λ)dλ

+
∫

∂D−
eiλ(x−Lj)+iλ2t(i f [j]1 (λ; Lj; t)− λ f [j]0 (λ; Lj; t))dλ

+
∫

∂D+
eiλx+iλ2t(i f [j]1 (λ; 0; t)− λ f [j]0 (λ; 0; t))dλ, (3.EFt)

valid for (x, t) ∈ (0, Lj)× [0, T]. We have thus arrived at the Ehrenpreis

form in t for the Linear Schrödinger equation on an interface. But we can

make eventual computation easier by expressing EFt in terms of some τ,

∀τ ∈ [t, T]. We do this by employing a similar argument to our applica-

tion of Jordan’s Lemma previously.

ieiλ2t
∫ τ

t
eλ2sq[j](X, s)ds + λeiλ2s

∫ τ

t
eiλ2s∂xq[j](X, s)ds) = O(|λ|−1),
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uniformly in arg(λ) as λ → ∞ within clos(D). We can use this informa-

tion to recast EFt in terms of τ as below

2πq[j](x, t) =
∫ ∞

−∞
eiλx+iλ2tq̂0

[j](λ)dλ

+
∫

∂D−
eiλ(x−Lj)+iλ2t(i f [j]1 (λ; Lj; τ)− λ f [j]0 (λ; Lj; τ))dλ

+
∫

∂D+
eiλx+iλ2t(i f [j]1 (λ; 0; τ)− λ f [j]0 (λ; 0; τ))dλ, (3.EFτ)

valid for (x, t) ∈ (0, Lj) × [0, τ], τ ∈ [0, T]. We have so arrived at the

Ehrenpreis form in τ (EFτ) for the Linear Schrödinger equation on an

interface and have concluded Stage I of the UTM.

3.3 Stage II

3.3.1 Progress Thus Far

We utilised the PDE and Initial Condition to derive first a global relation

in terms of transforms of the PDE and IC. We then worked to find a rep-

resentation (the Ehrenpreis Form) of the solution, q, in terms of contour

integrals deformed away from R. Until now, we have only required the

PDE and IC. In Stage II, we include BCs.
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3.3.2 Incorporating Boundary Conditions

Assume that q[j] satisfies not only the PDE and IC but also BC(1) and

BC(2). Observe thus that

f [1]0 (λ; 0, τ)︸ ︷︷ ︸
Known Data

=
∫ τ

0
e−iλ2sq[1](0, s)ds =

∫ τ

0
e−iλ2s0ds = 0, (3.9)

f [2]0 (λ; L2, τ)︸ ︷︷ ︸
Known Data

=
∫ τ

0
e−iλ2sq[2](L2, s)ds =

∫ τ

0
e−iλ2s0ds = 0. (3.10)

Applying BC(1) and BC(2) to the global relation gives us the following

altered global relations

q̂0
[1](λ)− e−iλ2t ˆq[1](λ; t) = e−iλ

(
i f [1]1 (λ; L1; t)− λ f [1]0 (λ; L1; t)

)
− (i f [1]1 (λ; 0; t)− 0) (3.11)

q̂0
[2](λ)− e−iλ2t ˆq[2](λ; t) = e−iλ

(
i f [2]1 (λ; L2; t)− 0

)
−
(

i f [2]1 (λ; 0; t)− λ f [2]0 (λ; 0; t)
)

(3.12)

q̂0
[3](λ)− e−iλ2t ˆq[3](λ; t) = e−iλ

(
i f [3]1 (λ; L3; t)− λ f [3]0 (λ; L3; t)

)
−
(

i f [3]1 (λ; 0; t)− λ f [3]0 (λ; 0; t)
)

(3.13)

where f [1]1 (λ; L1; t) = f [2]1 (λ; 0, τ) + f [3]1 (λ; 0, τ)− f [3]1 (λ; L3, τ), which we

get from conservation of flux and continuity conditions mean that f [1]0 (λ; L1; t) =

λ f [2]0 (λ; 0; t) = λ f [3]0 (λ; L3; t) = λ f [3]0 (λ; 0; t). We use these conditions to

construct a linear system of unknowns. This requires isolating the un-

known spectral functions in terms of known data.
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3.3.3 Linear System

Isolating unknown spectral functions

The above application of boundary conditions to the global relations leads

to the following simplified system of equations where unknown terms

are expressed in terms of “known” terms (for now, we shall take eλ2τ q̂(λ; τ)

to be “known” until we deal with it momentarily):

ie−iλ
[

f [2]1 (λ; 0, τ) + f [3]1 (λ; 0, τ)− f1(λ; L3, τ)
]
− λe−iλ f0(λ; L1, τ)

− i f [1]1 (λ; 0, τ) = q̂0
[1](λ)− e−iλ2tq̂[1](λ; t)

ie−iλ f1(λ; L2, τ)− i f [2]1 (λ; 0, τ)+λ f0(λ; L1, τ) = q̂0
[2](λ)− e−iλ2tq̂[2](λ; t)

ie−iλ f1(λ; L3, τ)− λe−iλ f0(λ; L1, τ)− i f [3]1 (λ; 0, τ) + λ f0(λ; L1, τ)

= q̂0
[3](λ)− e−iλ2tq̂[3](λ; t)

Note that in (3.3.3), f j(λ; X, τ) depends on λ entirely through λ2 in eλ2τ.

If we apply the identity mapping λ 7→ λ and the mapping λ 7→ −λ to

the global relation,

(GR)
∣∣∣
λ 7→λ

(GR)
∣∣∣
λ 7→−λ

we get six linearly independent equations involving six unknowns:
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

ie−iλL1 ie−iλL1 −ie−iλL1 −λ−iλ −i 0

ieiλL1 ieiλL1 −ieiλL1 λ−iλ −i 0

−i 0 0 λ 0 ie−iλL2

−i 0 0 −λ 0 ieiλL2

0 −i ie−iλL3 −λe−iλL3 + λ 0 0

0 −i ieiλL3 λeiλL3λ 0 0





f [1]1 (λ; 0, τ)

f [3]1 (λ; 0, τ)

f [3]1 (λ; L3, τ)

f [1]0 (λ; L1, τ)

f [1]1 (λ; 0, τ)

f [2]1 (λ; L2, τ)


=

(
q̂0

[1](λ) q̂0
[1](−λ) q̂0

[2](λ) q̂0
[2](−λ) q̂0

[3](λ) q̂0
[3](−λ)

)T

− e−iλ2τ

(
q̂[1](λ; τ) q̂[1](−λ; τ) q̂[2](λ; τ) q̂[2](−λ; τ) q̂[3](λ; τ) q̂[3](−λ; τ)

)T

This paper does not go beyond this phase of the UTM’s implementation

for this problem, but the next steps are similar to the non-interface prob-

lem. The above linear system will have to be solved using Cramer’s rule,

whereupon we will be able to replace unknowns in the Ehrenpreis form

with expressions of unknown terms using known terms. Then, using

Jordan’s lemma, we vanish all terms involving the last set of unknowns

(q̂[j](λ; τ)). This yields a solution representation which must then be ver-

ified in Stage III. The non-interface steps for the above are described in

Appendix B.
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Chapter 4

The LKdV Equation

4.1 Defining the Problem

We are interested in applying the UTM to analyse the Linearised Korteweg-

De Vries Equation, which is defined by the following Partial Differential

Equation (PDE), an Initial Condition (IC), and three Boundary Condi-

tions (BC(1), BC(2), and BC(3)). We will study this equation across a sim-

ple interface problem involving one interface and three domains. This

involves conditions for continuity at the interface (Interface Continuity)

and continuity of derivatives at the interface (Derivative Continuity).

[∂t + (−i∂xxx)]q[j](x, t) = 0 (PDE)

q[j](x, 0) = q[j]0 (x) (IC)

q[1](0, t) = 0 (BC (1))

q[2](L2, t) = 0 (BC (2))

q[2]x (L2, t) = 0 (BC (3))
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q[1](L1, t) = q[2](0, t) = q[3](0, t) = q[3](L3, t)

(Interface Continuity)

∂xq[1](L1, t) = ∂xq[2](0, t) = ∂xq[3](0, t) = ∂xq[3](L3, t)

(Derivative Continuity)

Figure 3.1 is the physical domain for which the problem is defined.

4.1.1 Preliminary Work

Consider that [∂t − ∂xxx] can be expressed as [∂t + i(−i∂xxx)]. First, we

investigate the Fourier Transform ·̂with
(
−i d3

dx3

)
on C∞[0, Lj]. We are in-

terested in this relationship to understand how a Fourier transform may

be applied to the PDE as a whole across the interface problem being stud-

ied.

(−i d
dx )

3
∧

φ(λ) = i
∫ Lj

0
e−iλxφ′′′(x)dx

Integrating by parts in x gives us

(−i d
dx )

3
∧

φ(λ) = e−iλLj
(
−iφ′′(Lj) + λ(φ′(Lj)) + iλ2(φ(Lj))

)
−
(
−iφ′′(0) + λφ′(0) + iλ2φ(0)

)
+ λ3φ̂(λ)
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4.2 Stage I

4.2.1 Global Relation

We now proceed to explore the first part of Stage I of the UTM, where

we seek to use the (PDE) and the (IC) to extract a global relation from the

problem as stated. Assuming ∃q[j] : [0, Lj]× [0, T] satisfying the PDE and

IC, we apply the Fourier transform and integrating factor eiλ3t to both

sides of the PDE:

0 =
d
dt
(eiλ3tq̂[j](λ; t))+ e−iλLj+iλ3t

(
∂xxq[j](Lj, t) + iλ∂xq[j](Lj, t)− λ2∂xq[j](Lj, t)

)
− eiλ3t(∂xxq[j](0, t) + iλ∂xq[j](0, t)− λ2q[j](0, t)) (4.1)

Where equation (4.1) above is an ODE. We integrate the above in t and

use the IC to solve the ODE for q̂[j](λ; t).

0 = eiλ3tq̂[j](λ; t)− q̂0
[j](λ; 0)

+ e−iλLj

∫ t

0
eiλ3s(∂xxq[j](Lj, s) + iλ∂xq[j](Lj, s)− λ2∂xq[j](Lj, s))ds

−
∫ t

0
eiλ3s(∂xxq[j](0, s) + iλ∂xq[j](0, s)− λ2q[j](0, s))ds (4.2)

For convenience, we denote the above using the following notation (which

will be analysed later in the method as well and is of importance)

f [j]k (λ; X; t) :=
∫ t

0
eiλ3s∂k

xq[j](X, s)ds (4.3)
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so that (4.2) is written as

q̂0
[j](λ)− eiλ3tq̂[j](λ; t) = e−iλLj( f [j]2 (λ; Lj, t) + iλ f [j]1 (λ; Lj, t)− λ2 f [j]0 (λ; Lj, t))

− ( f [j]2 (λ; 0, t) + iλ f [j]1 (λ; 0, t)− λ2 f [j]0 (λ; 0, t))

(4.4)

Equation (4.4) above is the global relation. Note the intervals we are oper-

ating in: [0, L1], [0, L2], [0, L3]. We therefore derive three global relations,

one for each j.

4.2.2 Setting Up Contours

Having derived a global relation from the PDE and IC, we now work to

set up contours in the complex plane as a first step to derive the Ehren-

preis form equation, which will be crucial in deriving our final solution

representation. First, however, we solve for q[j](x, t) in order to set up the

equation for contour deformation in the complex plane. We achieve this

with an inverse Fourier transform applied to the global relation. Note:

ˆq[j](λ)− eiλ3t ˆq[j](λ; t) = (. . . )

=⇒ ˆq[j](λ; t) = e−iλ3t
[

ˆq[j](λ)− (. . . )
]
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We apply an inverse Fourier transform to both sides of this rearrange-

ment and this gives us

2πq[j](x, t) =
∫ ∞

−∞
eiλx−iλ3tq̂0

[j](λ)dλ

−
∫ ∞

−∞
eiλ(x−Lj)−iλ3t( f [j]2 (λ; Lj; t) + iλ f [j]1 (λ; Lj; t))− λ2 f [j]0 (λ; Lj; t))dλ

(4.5)

−
∫ ∞

−∞
eiλx−iλ3t( f [j]2 (λ; 0; t) + iλ f [j]1 (λ; 0; t)− λ2 f [j]0 (λ; 0; t))dλ

(4.6)

Now, our aim is to deform the latter two contours of integration from

the above ((4.5) and (4.6)) away from R. In order to accomplish this, we

first define the closures within the complex plane that we seek to deform

these contours within.

Definition 4.2.1 (Complex Plane Sectors of Interest)

C± := {λ ∈ C : ±Im(λ) > 0}

D := {λ ∈ C : Re(iλ3) < 0}, D± := D ∩C±

E := {λ ∈ C : Re(iλ3) > 0}, E± := E ∩C±

We now explore the limiting properties of the notation we introduced in

(4.3) as observed in the latter two integrals of (4.5) and (4.6). We do this

by integrating by parts in s.

e−iλ3t f [j]k (λ; X, t) =
∫ t

0
e−iλ3(s−t)∂k

xq[j](X, s)ds

= iλ−3[eiλ3(s−t)∂k
xq[j](X, s)]s=t

s=0︸ ︷︷ ︸
O(|λ|−3)

− iλ−3
∫ t

0
eiλ3(s−t)∂t∂

k
xq[j](X, s)ds︸ ︷︷ ︸

O(|λ|−3)

= O(|λ|−3), uniformly in arg(λ) as λ→ ∞ within clos(E)
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<{λ}

={λ}

D+

∂D+

D+

∂D+

D−

∂D−

E+

E− E−

π
3

π
3

π
3

FIGURE 4.1: Closed Sectors for Contour Deformation
(LKdV Equation)

The above can be applied to find that e−iλ3t( f [j]k (λ; X, t) + iλ f [j]k (λ; X, t)−

λ2 f [j]k (λ; X, t)) = O(|λ|−1) uniformly in arg(λ) as λ → ∞ within clos(E)

Having shown that the integrands decay, we are prepared to apply Jor-

dan’s lemma to (4.5) and (4.6). By Jordan’s Lemma, for x ∈ (0, Lj),

∫
∂E+

eiλ(x−Lj)−iλ3t( f [j]2 (λ; Lj; t) + iλ f [j]1 (λ; Lj; t)− λ2 f [j]0 (λ; Lj; t)dλ = 0,∫
∂E+

eiλx−iλ3t( f [j]2 (λ; 0; t) + iλ f [j]1 (λ; 0; t)− λ2 f [j]0 (λ; 0; t)dλ = 0.

This gives us, for the integral in (4.6)

∫ ∞

−∞
. . . dλ =

∫ ∞

−∞
−
∫

∂E+
. . . dλ =

∫
∂D+

. . . dλ, (4.7)
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and, for the integral in (3.5)

∫ ∞

−∞
. . . dλ = −

∫ −∞

∞
. . . dλ

= −
∫ −∞

∞
−
∫

∂E−
. . . dλ = −

∫
∂D−

. . . dλ. (4.8)

Substituting this implication back into our inverse Fourier transform rep-

resentation of q[j](x, t) by altering (4.5) and (4.6) yields

2πq[j](x, t) =
∫ ∞

−∞
eiλx−iλ3tq̂0

[j](λ)dλ

−
∫

∂D−
eiλ(x−Lj)−iλ3t( f [j]2 (λ; Lj; t) + iλ f [j]1 (λ; Lj; t)− λ2 f [j]0 (λ; Lj; t))dλ

+
∫

∂D+
eiλx−iλ3t( f [j]2 (λ; 0; t) + iλ f [j]1 (λ; 0; t)− λ2 f [j]0 (λ; 0; t))dλ

(4.EFt)

valid for (x, t) ∈ (0, Lj)× [0, T].

We have thus arrived at the Ehrenpreis Form in t for the Linearised Korteweg-

De Vries Equation. But we can make eventual computation easier by ex-

pressing EFt in terms of some τ, ∀τ ∈ [t, T]. We do this by employing a

similar argument to our application of Jordan’s Lemma previously.

e−iλ3t
(∫ τ

t
eiλ3s∂xxq[j](X, s)ds + iλ

∫ τ

t
eiλ3s∂xq[j](X, s)ds− λ2

∫ τ

t
eiλ3sq[j](X, s)ds

)
= O(|λ|−1) (4.9)
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uniformly in arg(λ) as λ → ∞ within clos(D). We can use this informa-

tion to recast EFt in terms of τ as below

2πq[j](x, t) =
∫ ∞

−∞
eiλx−iλ3tq̂0

[j](λ)dλ

−
∫

∂D−
eiλ(x−Lj)−iλ3t( f [j]2 (λ; Lj; t) + λ f [j]1 (λ; Lj; t)− iλ2 f [j]0 (λ; Lj; t))dλ

+
∫

∂D+
eiλx−iλ3t( f [j]2 (λ; 0; t) + iλ f [j]1 (λ; 0; t)− λ2 f [j]0 (λ; 0; t))dλ

(4.EFτ)

valid for (x, t) ∈ (0, 1)× [0, τ], τ ∈ [0, T].

We have so arrived at the Ehrenpreis form in τ (EFτ) for the linearised

Korteweg-De Vries equation on an interface and have concluded Stage I

of the UTM.

4.3 Stage II

4.3.1 Progress Thus Far

We utilised the PDE and Initial Condition to derive first a global rela-

tion in terms of transforms of the PDE and IC. We then worked to find a

representation (the Ehrenpreis form) of this relation in terms of contour

integrals deformed away from R. Until now, we have only required the

PDE and IC. In Stage II, we include BCs.
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4.3.2 Incorporating Boundary Conditions

Assume that q[j] satisfies not only the PDE and IC but also BC(1), BC(2),

and BC(3) Observe thus that

f [1]0 (λ; 0, τ)︸ ︷︷ ︸
Known Data

=
∫ τ

0
eiλ3sq[1](0, s)ds =

∫ τ

0
eiλ3s0ds = 0, (4.10)

f [2]0 (λ; L2, τ)︸ ︷︷ ︸
Known Data

=
∫ τ

0
eiλ3sq[2](L2, s)ds =

∫ τ

0
eiλ3s0ds = 0, (4.11)

f [2]1 (λ; L2, τ)︸ ︷︷ ︸
Known Data

=
∫ τ

0
eiλ3s∂xq[2](L2, s)ds =

∫ τ

0
eiλ3s0ds = 0. (4.12)

Applying BC(1), BC(2), and BC(3) to the global relation gives us the fol-

lowing altered global relations:

q̂0
[1](λ)− eiλ3tq̂[1](λ; τ) = e−iλL1( f [1]2 (λ; L1, τ) + iλ f [1]1 (λ; L1, τ)− λ2 f [1]0 (λ; L1, τ))

− ( f [1]2 (λ; 0, τ) + iλ f [1]1 (λ; 0, τ)− 0

q̂0
[2](λ)− eiλ3tq̂[2](λ; τ) = e−iλL2( f [2]2 (λ; L2, τ) + 0− 0)

−
(

f [2]2 (λ; 0, τ) + iλ f [2]1 (λ; 0, τ)− λ2 f [2]0 (λ; 0, τ)
)

q̂0
[3](λ)− eiλ3tq̂[3](λ; τ) = e−iλL3

(
f [3]2 (λ; L3, τ) + iλ f [3]1 (λ; L3, τ)− λ2 f [3]0 (λ; L3, τ)

)
−
(

f [3]2 (λ; 0, τ) + iλ f [3]1 (λ; 0, τ)− λ2 f [3]0 (λ; 0, τ)
)

where it follows from interface continuity conditions that f [1]0 (λ; L1, τ) =

f [2]0 (λ; 0, τ) = f [3]0 (λ; L3, τ) = f [3]0 (λ; 0, τ) and it follows from derivatives

continuity conditions that f [1]1 (λ; L1, τ) = f [2]1 (λ; 0, τ) = f [3]1 (λ; L3, τ) =

f [3]1 (λ; 0, τ). We are essentially able to take advantage of the interface

nature of the problem to considerably simplify our work, and this will be

a recurring feature of working in interfaces as seen below.
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4.3.3 Linear System

Isolating unknown spectral functions

The above application of boundary conditions to the global relations leads

to the following simplified system of equations where unknown terms

are expressed in terms of “known” terms (for now, we shall take eiλ3τ ˆq[j](λ; τ)

to be “know” until we deal with it momentarily):

e−iλL1 f [1]2 (λ; L1, τ) + iλe−iλL1 f [1]1 (λ; L1, τ)− λ2e−iλL1 f [1]0 (λ; L1, τ)

− f [1]2 (λ; 0, τ)− iλ f [1]1 (λ; 0, τ) = q̂0
[1](λ)− eiλ3t ˆq[1](λ; τ)

e−iλL2 f [2]2 (λ; L2, τ)− f [2]2 (λ; 0, τ)− iλ f [1]1 (λ; L1, τ) + λ2 f [1]0 (λ; L1, τ)

= q̂0
[2](λ)− eiλ3tq̂[2](λ; τ)

e−iλL3 f [3]2 (λ; L3, τ) + iλe−iλL3 f [1]1 (λ; L1, τ)− λ2e−iλL3 f [1]0 (λ; L1, τ)

− f [3]2 (λ; 0, τ)− iλ f [1]1 (λ; L1, τ)+λ2 f [1]0 (λ; L1, τ) = q̂0
[3](λ)− eiλ3tq̂[3](λ; τ)

Note that in the system from (4.3.3), f j(λ; X, τ) depends on λ entirely

through λ3 in eiλ3τ. If we apply the mappings λ 7→ λ, λ 7→ αλ, and

λ 7→ α2λ
(

α ∈ C = 3
√

1
)

to the global relation (GR),

(GR)
∣∣∣
λ 7→λ

(GR)
∣∣∣
λ 7→αλ

(GR)
∣∣∣
λ 7→α2λ
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we get three linearly independent equations involving nine unknowns

(after elementary row operations to simplify the matrix).



e−iλL1 iλe−iλL1 −λ2e−iλL1 −1 −iλ 0 0 0 0

e−iαλL1 iαλe−iαλL1 −αλ2e−iαλL1 −1 −iαλ 0 0 0 0

e−iα2λL1 iα2λe−iα2λL1 −α2λ2e−iα2λL1 −1 −iα2λ 0 0 0 0

0 −iλ λ2 0 0 e−iλL2 −1 0 0

0 −iαλ αλ2 0 0 e−iαλL2 −1 0 0

0 −iα2λ α2λ2 0 0 e−iα2λL2 −1 0 0

0 iλe−iλL3 −λ2e−iλL3 0 0 −e−iλL2 1 e−iλL3 −1

0 iαλe−iαλL3 −αλ2e−iαλL3 0 0 −e−iαλL2 1 e−iαλL3 −1

0 iα2λe−iα2λL3 −α2λ2e−iα2λL3 0 0 e−iα2λL2 1 e−iα2λL3 −1




f [1]2 (λ; L1, τ)

f [1]1 (λ; L1, τ)

f [1]0 (λ; L1, τ)

f [1]2 (λ; 0, τ)

f [2]1 (λ; 0, τ)

f [2]2 (λ; L2, τ)

f [2]2 (λ; 0, τ)

f [3]2 (λ; L3, τ)

f [3]2 (λ; 0, τ)



=



q̂0
[1](λ)

q̂0
[1](αλ)

q̂0
[1](α2λ)

q̂0
[2](λ)

q̂0
[2](αλ)

q̂0
[2](α2λ)

q̂0
[3](λ)

q̂0
[3](αλ)

q̂0
[3](α2λ)



− eiλ3τ



q̂[1](λ; τ)

q̂[1](αλ; τ)

q̂[1](α2λ; τ)

q̂[2](λ; τ)

q̂[2](αλ; τ)

q̂[2](α2λ; τ)

q̂[3](λ; τ)

q̂[3](αλ; τ)

q̂[3](α2λ; τ)


Similar to LS, this paper ends the implementation of the UTM for this

problem here, with similar next steps regarding the linear system, solu-

tion representation, and Stage III. These are described in detail for the

non-interface LKdV problem in Appendix C.
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Chapter 5

Conclusion

5.1 What This Paper Did

In this project, we explored the UTM, studied its full implementation on

the half-line heat problem and partial implementations for the LS and

LKdV equations. For the latter two, we implemented the method to ex-

tract global relation and Ehrenpreis form formulae. We observed with the

linear system that the problem becomes computationally expensive very

quickly and requires a solution representation that can be numerically

evaluated by a computer. But we noticed that the UTM’s implementa-

tion is standard throughout and does in fact produce global relations and

Ehrenpreis form equations for further analysis. While our partial imple-

mentation stopped with the linear systems, we laid out the data for a

solution representation and isolated unknowns in terms of known data.
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5.2 What This Paper Didn’t Do

This project did not fully implement the UTM for the LS and LKdV equa-

tions. It did not provide solution representations, let alone verify these

representations in Stage III. These are obvious next steps. Finally, with-

out verified solution representations, it is impossible to numerically eval-

uate the solution(s). Another next step would thus be to use software

to numerically evaluate the verified solution representations, check the

LS solution against the solution from classical methods, and potentially

visualise the solutions.
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Appendix A

Heat Equation Appendix

A.0.1 Stage I EFτ

We can make eventual computation easier by expressing EFt in terms of

some τ, ∀τ ∈ [t, T]. We do this by employing a similar argument to our

application of Jordan’s Lemma previously.

e−λ2t(iλ
∫ τ

t
eλ2sq(X, s)ds +

∫ τ

t
eλ2s∂xq(X, s)ds) = O(|λ|−1),

uniformly in arg(λ) as λ→ ∞ within clos(D).

We can use this information to recast EFt in terms of τ as below

2πq(x, t) =
∫ ∞

−∞
eiλx−λ2tq̂(λ)dλ

−
∫

∂D+
eiλx−λ2t(iλ f0(λ; 0; τ) + f1(λ; 0; τ))dλ

−
∫

∂D−
eiλ(x−1)−λ2t( f1(λ; 1; τ) + iλ f0(λ; 1; τ))dλ, (2.EFτ)

valid for (x, t) ∈ (0, 1)× [0, T], τ ∈ [0, T].

We have so arrived at the Ehrenpreis Form in τ (EFτ).
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A.0.2 Stage III Boundary Conditions

Similar to our work with the initial condition above, we aim to isolate

(2.BC (1)) and (2.BC (2)) within our derived (2.SRTτ). To do this, we need

to reconstruct (SRτ) as a series representation.

Series Representation

We first use Jordan’s Lemma to deform the part of
∫

∂D± dependent on q̂0

to the real line perturbed along semicircular contours pf radius ε around

the poles of ∆(λ), (kπ, k ∈ Z). We also deform
∫ ∞
−∞ eiλx q̂0(λ)dλ "up"

around each zero of ∆(λ), to Γ± Observe that

FIGURE A.1: Heat Equation Pole Perturbation

q̂0(λ) =
ζ+(λ; q̂0)− e−iλζ−(λ; q̂0)

∆(λ)
(A.1)

We use (A.1) above in conjunction with the deformations described above

to combine the integrals along Γ± into a series of integrals about small
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circular contours. This yields

2πq(x, t) = ∑
k∈Z

∫
C(kπ,ε)

eiλ(x−1)−λ2t
(
−q̂0(λ) + q̂0(−λ)

e−iλ − eiλ

)
dλ

−
∫

∂D+
eiλx−λ2t

(
(iλh0(λ; τ) +

ζ+(λ; M(·; τ))

∆(λ)

)
dλ

−
∫

∂D−
eiλ(x−1)−λ2t

(
(iλh1(λ; τ) +

ζ−(λ; M(·; τ))

∆(λ)

)
dλ

(2.SRTτ − Series)

Homogeneous Boundary Conditions

Studying (2.SRTτ − Series), we notice two things of importance: first, re-

gardless if x = 0 or x = 1, residues cancel out since
∫

C(kπ,) . . . dλ =

−
∫

C(−kπ,) . . . dλ. This is akin to eliminating the first integral as a self-

cancelling sum of circular integrals around poles that mirror each other

(for every kπ, there is an equivalent −kπ). Taking this fact together with

the second and third integrals evaluating to 0 if (2.BC (1)) and (2.BC (2))

are homogeneous, we can conclude that (2.SRTτ) satisfies the Boundary

Conditions for the Heat Equation provided they are homogeneous.

Inhomogeneous Boundary Conditions

If (2.BC (1)) and (2.BC (2)) are inhomogeneous, the fact remains that re-

gardless if x = 0 or x = 1, residues cancel out since
∫

C(kπ,) . . . dλ =

−
∫

C(−kπ,) . . . dλ. Now, for each case x = 0 and x = 1, we aim to show

that the remainder of (2.SRTτ − Series) yields the Boundary Conditions.

We begin with the case where x = 0. We change variables in
∫

∂D− . . . dλ
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such that λ 7→ −λ. We combine both integrals and simplify to see that

2πq(0, t) = −
∫

∂D+
e−λ2t[iλh0(λ; τ) + eiλiλh1(λ; τ) + iλ{h0(λ; τ)− eiλh1(λ; τ)}]dλ

= −
∫

∂D+
e−λ2t2iλh0(λ; τ)dλ

= −
∫

∂D+
e−λ2t2iλ

∫ T

0
eλ2sg0(s)dsdλ

Interestingly, the form of the above expression resembles an inverse Fourier

transform followed by a Fourier transform, with the only discrepancy be-

ing the exponential terms. We try to see if we can substitute the relevant

variables to acquire the proper form. Change variables once more: let

λ2 = −iρ =⇒ λ = i
√

iρ. This does produce a constructed Inverse

Fourier Transform and notice also that dρ
dλ = 2iλ Thus,

−
∫
−R

eiρt
∫ T

0
e−iρsg0dsdρ = 2πg0(t)

We now check the case where x = 1. We change variables in
∫

∂D+ . . . dλ

such that λ 7→ −λ. We combine both integrals and simplify to see that

2πq(1, t) = −
∫

∂D−
e−λ2t[iλh1(λ; τ)

+ e−iλiλh0(λ; τ) + e−iλ{iλ(eiλh1(λ; τ)− h0(λ; τ))}]dλ

= −
∫

∂D−
e−λ2t2iλh1(λ; τ)dλ

= −
∫

∂D−
e−λ2t2iλ

∫ T

0
eλ2sg1(s)dsdλ
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Change variables once more: let λ2 = −iρ =⇒ λ = −i
√

iρ. This

produces a constructed Inverse Fourier Transform and notice that dρ
dλ =

2iλ. Thus we see that

−
∫
−R

eiρt
∫ T

0
e−iρsg1dsdρ = 2πg1(s)

We have demonstrated that the solution representation satisfies the bound-

ary conditions. In addition to this, we also showed that it satisfied the

PDE and the IC as well. In conclusion, the solution representation solves

the problem defined and we have successfully employed the Unified

Transform Method to solve the Heat Equation.
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Appendix B

LS Equation Appendix

B.1 Defining the Problem

We are interested in applying the UTM to analyse the Time-Dependent,

Zero Potential Linear Schrödinger Equation, which is defined by the fol-

lowing Partial Differential Equation (PDE), an Initial Condition (IC), and

two Boundary Conditions (BC(1) and BC(2)).

[∂t + i∂xx]q(x, t) = 0 (PDE)

q(x, 0) = q0(x) (IC)

q(0, t) = g0 (BC (A))

q(1, t) = g1 (BC (B))

B.1.1 Linear System

For now, we shall take eλ2τ q̂(λ; τ) to be "known" until we deal with it mo-

mentarily. So we now have two unknowns expressed in terms of known
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data. Note that in (??), f j(λ; X, τ) depends on λ entirely through λ2 in

eλ2τ. If we apply the identity mapping λ 7→ λ and the mapping λ 7→ −λ

to the Global Relation, (GR)
∣∣∣
λ 7→λ

and (GR)
∣∣∣
λ 7→−λ

yield a system of two

linearly independent equations with the two unknowns as below.

−i

−e−iλ 1

−eiλ 1


 f1(λ; 1, τ)

f1(λ; 0, τ)

 =

 M(λ)

M(−λ)

+

 q̂0(λ)

q̂0(−λ)

− e−iλ2τ

 q̂(λ; τ)

q̂(−λ; τ)


Where M(λ) = −λh0(λ; τ) + λe−iλh1(λ; τ) and M(−λ) = λh0(−λ; τ)−

λeiλh1(−λ; τ) We solve this system using Cramer’s Rule

∆(λ) =

∣∣∣∣∣∣∣
−e−iλ 1

−eiλ 1

∣∣∣∣∣∣∣ = −e−iλ + eiλ

= 2isin(λ) (∆(λ))

ζ+(λ; φ) =

∣∣∣∣∣∣∣
φ(λ) 1

φ(−λ) 1

∣∣∣∣∣∣∣ = −φ(λ)− φ(−λ)

ζ−(λ; φ) =

∣∣∣∣∣∣∣
−e−iλ φ(λ)

−eiλ φ(−λ)

∣∣∣∣∣∣∣ = −φ(−λ)e−iλ + φ(λ)eiλ

Using (??) and (??), we recast the unknowns in (??) as follows

f1(λ; 0, τ) =
ζ−(λ; M(·; τ)

∆(λ))
+

ζ−(λ; q̂0(λ))

∆(λ)
− e−iλ2τ

(
ζ−(λ; q̂(·; τ))

∆(λ)

)

and

f1(λ; 1, τ) =
ζ+(λ; M(·; τ)

∆(λ))
+

ζ+(λ; q̂0(λ))

∆(λ)
− e−iλ2τ

(
ζ+(λ; q̂(·; τ))

∆(λ)

)
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B.1.2 Perturbing Around Poles

From the above, we see that the zeroes of ∆(λ) are nπ. Before proceed-

ing, we must deform ∂D± around these zeroes. To achieve this, we use

Cauchy’s Theorem in conjunction with a reconstruction of ∂D± with a

simple, closed curve Γ as follows

Definition B.1.1 (Parametrisation of Γ)

Let Γ be a closed unit circle oriented clockwise around every pole of ∆(λ):

x = nπ + sinθ

y = cosθ

for θ ∈ [π, 2π), n ∈ [0,+∞)

Let ∂D± = γ. Then, with the parametrisation of Γ above, we are able to

use Cauchy’s Theorem to demonstrate that

∫
γ

f (z)dz =
∫

Γ′
f (z)dz +

∫
Γ

f (z)dz

Where
∫

Γ f (z)dz = 0 by Cauchy’s Theorem We obtain ∂̃D±, which repre-



Appendix B. LS Equation Appendix 54

FIGURE B.1: Linear Schrödinger Adjusted Contour Sectors

sents the perturbed ∂D± using the method above. So, EFτ becomes

2πq(x, t) =
∫ ∞

−∞
eiλx+iλ2tq̂(λ)dλ

+
∫

∂D̃−
eiλ(x−1)+iλ2t(i f1(λ; 1; τ)− λ f0(λ; 1; τ))dλ

+
∫

∂D̃+
eiλx+iλ2t(i f1(λ; 0; τ)− λ f0(λ; 0; τ))dλ (ẼFτ)

valid for (x, t) ∈ (0, 1)× [0, τ], τ ∈ [0, T]

B.1.3 Solution Representation

Now we can safely move on. We have expressed our hitherto unknown

data in terms of known data. But not entirely, since we have been pre-

tending that q̂(·; τ) is data when it is not. It is now time to deal with

it. Substituting the above into EFτ and taking the remaining non-data
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integrands outside gives us

2πq(x, t) =
∫ ∞

−∞
eiλx−iλ2tq̂(λ)dλ +

∫
∂D̃−

data dλ +
∫

∂D̃+
data dλ

− i
∫

∂D̃−
eiλ(x−1)eiλ2(t−τ)

(
ζ+(λ; q̂(·; τ))

∆(λ)

)
dλ

− i
∫

∂D̃+
eiλxeiλ2(t−τ)

(
ζ−(λ; q̂(·; τ))

∆(λ)

)
dλ

Our aim is to show the integrals involving q̂(·; τ) evaluate to 0. We do

this by employing Jordan’s Lemma. We see that the ratio term in the in-

tegrands we are interested in is O(|λ|−1), uniformly in arg(λ) as λ → ∞

within Clos(D±). Hence, both of these integrals evaluate to zero within

their respective closures. Having done this, we have arrived at the Solu-

tion Representation for the Heat Equation in terms of contour integrals

around D

2πq(x, t) =
∫ ∞

−∞
eiλx+iλ2tq̂(λ)dλ

+
∫

∂D̃−
ieiλ(x−1)+iλ2t

(
(−λh1(λ; τ)) +

ζ+(λ; M(·; τ) + q̂0

∆(λ))

)
dλ

+
∫

∂D̃+
ieiλx+iλ2t

(
(−λh0(λ; τ)) +

ζ−(λ; M(·; τ) + q̂0

∆(λ))

)
dλ

(SRTτ)

Where hj, M, q̂0, ζ± are explicitly defined in the problem data.
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B.2 Stage III

Having derived a Solution Representation, we define q(x, t) using (SRTτ)

and verify if it indeed solves the problem we defined in Stage I by check-

ing if it satisfies the PDE, IC, and BCs.

B.2.1 PDE

Any (x, t) ∈ (0, 1)× (0, T) has a closed neighbourhood Ω within (0, 1)×

(0, T) such that eiλx′+iλ2t′ → 0 exponentially uniformly on (x′, t′) ∈ Ω as

λ→ ∞ along R or ∂D±

Therefore, all partial derivatives of q exist and are given by differentiat-

ing the integrand. Taking ∂ as defined in (SRTτ) above and integrating

therefore does satisfy the PDE.

B.2.2 Initial Condition

We aim to isolate the initial conditions from our (SRTτ). Before we ac-

complish this, note that ∀T ∈ (SRT), T can be replaced by τ, ∀τ ∈ [t, T].

So, q is equivalently defined by both (SRT) and ((SRTτ)). When we set

τ = t and t = 0, hj(λ; 0) = 0 =⇒ M(λ; 0) = 0. Thus we cancel these

terms and are left with a Solution Representation in terms of q̂0

2πq(x, 0) =
∫ ∞

−∞
eiλx q̂(λ)dλ

+
∫

∂̃D+
eiλx

(
ζ−(λ; q̂0)

∆(λ)

)
dλ +

∫
∂̃D−

eiλ(x−1)
(

ζ+(λ; q̂0)

∆(λ)

)
dλ︸ ︷︷ ︸

= 0 by Jordan’s Lemma
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Thus, we reduce the equation above to an Inverse Fourier Transform

=⇒ 2πq(x, 0) = q0(x), ∀x ∈ (0, 1)

We have thus shown that (SRTτ) does satisfy (IC).

B.2.3 Boundary Conditions

Similar to our work with the Initial Condition above, we aim to isolate

(BC (A)) and (BC (B)) within our derived (SRTτ). To do this, we need to

reconstruct SRτ as a series representation.

Series Representation

Recall our adjusted (ẼFτ). We first use Jordan’s Lemma to deform the

(undeformed in (ẼFτ)) part of
∫

∂D± dependent on q̂0 to the real line per-

turbed along semicircular contours of radius ε around the poles of (∆(λ)),

(kπ, k ∈ Z). That is, we deform the positive and negative imaginary axes

to the real line. We also deform
∫ ∞
−∞ eiλx q̂0(λ)dλ "up" around each zero

of (∆(λ)), to Γ±. Observe that

q̂0(λ) =
ie−iλζ+(λ; q̂0)− iζ−(λ; q̂0)

∆(λ)
(B.1)

We use (B.1) above in conjunction with the deformations described above

and move terms dependent on q̂0 from the latter two integrals to the first
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integral. This yields

2πq(x, t) = ∑
k∈Z

∫
C(kπ,ε)

eiλx+iλ2ti
(

q̂0(−λ)e−iλ − q̂0(λ)eiλ

eiλ − e−iλ

)
dλ

+
∫

∂̃D−
eiλ(x−1)+iλ2t

(
ζ+(λ; M(·; τ))

∆(λ)
− (λh1(λ; τ)

)
dλ

+
∫

∂̃D+
eiλx+iλ2t

(
ζ−(λ; M(·; τ))

∆(λ)
− (λh0(λ; τ)

)
dλ

(SRTτ − Series)

Homogeneous Boundary Conditions

Studying (SRTτ − Series), we notice two things of importance: first, re-

gardless if x = 0 or x = 1, residues cancel out since
∫

C(kπ,) . . . dλ =

−
∫

C(−kπ,) . . . dλ. This is akin to eliminating the first integral as a self-

cancelling sum of circular integrals around poles that mirror each other

(for every kπ, there is an equivalent −kπ). Taking this fact together with

the second and third integrals evaluating to 0 if (BC (A)) and (BC (B)) are

homogeneous, we can conclude that (SRTτ) satisfies the Boundary Con-

ditions for the Heat Equation provided they are homogeneous.

Inhomogeneous Boundary Conditions

If (BC (A)) and (BC (B)) are inhomogeneous, the fact remains that re-

gardless if x = 0 or x = 1, residues cancel out since
∫

C(kπ,) . . . dλ =

−
∫

C(−kπ,) . . . dλ. Now, for each case x = 0 and x = 1, we aim to show

that the remainder of (SRTτ − Series) yields the Boundary Conditions.

We begin with the case where x = 0. We change variables in
∫

∂̃D− . . . dλ
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such that λ 7→ −λ. We combine both integrals and simplify to see that

2πq(0, t) =
∫

∂̃D+
ieiλ2t[−λh0(λ; τ) + eiλλh1(λ; τ)− λh0(λ; τ) + λeiλh1(λ; τ)]dλ

= −
∫

∂̃D+
ieiλ2t2λeiλh0(λ; τ)dλ

= −
∫

∂̃D+
eiλ2t2iλeiλ

∫ T

0
e−iλ2sg0(s) dsdλ

Change variables to find some λ2 = r1 such that this r1 produces a con-

structed inverse Fourier transform.

Then check the case where x = 1. We change variables in
∫

∂̃D+ . . . dλ such

that λ 7→ −λ. We combine both integrals and simplify to see that

2πq(1, t) =
∫

∂̃D−
ieiλ2t[−λh1(λ; τ) + eiλλh0(λ; τ) + eiλ(−λh0(λ; τ)− eiλλh1(λ; τ))]dλ

= −
∫

∂̃D−
ieiλ2th1(λ; τ)(λ− e2iλ)dλ

= −
∫

∂̃D−
eiλ2t(λ− e2iλ)

∫ T

0
e−iλ2sg1(s) dsdλ

Change variables to find some λ2 = r2 such that this r2 produces a con-

structed inverse Fourier transform.
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Appendix C

LKdV Equation Appendix

C.1 Defining the Problem

We are interested in applying the UTM to analyse the Linearised Korteweg-

De Vries Equation, which is defined by the following Partial Differential

Equation (PDE), an Initial Condition (IC), and three Boundary Condi-

tions (BC(1), BC(2), and BC(3)).

[∂t − ∂xxx]q(x, t) = 0 (PDE)

q(x, 0) = q0(x) (IC)

q(0, t) = g0 (BC (1))

q(1, t) = g1 (BC (2))

qx(0, t) = g2 (BC (3))

C.1.1 Linear System

For now, we shall take eiλ3τ q̂(λ; τ) to be "known" until we deal with it

momentarily. So we now have three unknowns expressed in terms of
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known data. Note that in (??), f j(λ; X, τ) depends on λ entirely through

λ3 in eiλ3τ. If we apply the mappings λ 7→ λ, λ 7→ αλ, and λ 7→ α2λ (α ∈

C = 3
√

1) to the Global Relation, (GR)
∣∣∣
λ 7→λ

, (GR)
∣∣∣
λ 7→αλ

, and (GR)
∣∣∣
λ 7→α2λ

yield a system of three linearly independent equations with the three un-

knowns as below.
1 −e−iλ −iλe−iλ

1 −eiαλ −iαλe−iαλ

1 −eiα2λ −iα2λe−iα2λ




f2(λ; 0, τ)

f2(λ; 1, τ)

f1(λ; 1, τ)

 =


M(λ)

M(αλ)

M(α2λ)

+


q̂0(λ)

q̂0(αλ)

q̂0(α
2λ)



− eiλ3τ


q̂(λ; τ)

q̂(αλ; τ)

q̂(α2λ; τ)


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Where M(λ) = −e−iλλ2h1(λ; τ) + λ2h0(λ; τ)− iλh2(λ; τ) We solve this

system using Cramer’s Rule

∆(λ) =

∣∣∣∣∣∣∣∣∣∣
1 −e−iλ −iλe−iλ

1 −eiαλ −iαλe−iαλ

1 −eiα2λ −iα2λe−iα2λ

∣∣∣∣∣∣∣∣∣∣
= −iλ(e−iλ(1+α)(1− λ) + e−iαλ(1+α)(α− α2)

+ e−iλ(1+α2)(α2 − 1) (∆(λ))

ζ ′(λ; φ) =

∣∣∣∣∣∣∣∣∣∣
φ(λ) −e−iλ −iλe−iλ

φ(αλ) −eiαλ −iαλe−iαλ

φ(α2λ) −eiα2λ −iα2λe−iα2λ

∣∣∣∣∣∣∣∣∣∣
= φ(λ)(e−iαλ(1+α)(iαλ(α− 1))

+ iαλ(φ(α2λ)(e−iλ(1+α) − α(φ(αλ)(e−iλ(1+α2)))

− iλ(φ(α2λ)(e−iλ(1+α))− φ(αλ)(e−iλ(1+α2))) (C.1)

ζ ′′(λ; φ) =

∣∣∣∣∣∣∣∣∣∣
1 φ(λ) −iλe−iλ

1 φ(αλ) −iαλe−iαλ

1 φ(α2λ) −iα2λe−iα2λ

∣∣∣∣∣∣∣∣∣∣
= −iλ(φ(λ)(α(e−iαλ − αe−iαλ

))

+ φ(αλ)(α2e−iα2λ − e−iλ)

+ φ(α2λ)(e−iλ − αe−iαλ)) (C.2)

ζ ′′′(λ; φ) =

∣∣∣∣∣∣∣∣∣∣
1 −e−iλ φ(λ)

1 −eiαλ φ(αλ)

1 −eiα2λ φ(α2λ)

∣∣∣∣∣∣∣∣∣∣
= φ(λ)(eiαλ − eiα2λ)

+ φ(αλ)(iα2λ−e−iλ)

+ φ(α2λ)(e−iλ − eiαλ) (C.3)
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We take (C.1), (C.2), and (C.3) and recast the unknowns in (??) as follows

f2(λ; 0, τ) =
ζ ′(λ; M(·; τ)

∆(λ)
) +

ζ ′(λ; q̂0(λ))

∆(λ)
− eiλ3τ

(
ζ
′
(λ; q̂(·; τ))

∆(λ)

)

and

f2(λ; 1, τ) =
ζ ′′(λ; M(·; τ)

∆(λ)
) +

ζ ′′(λ; q̂0(λ))

∆(λ)
− eiλ3τ

(
ζ
′′
(λ; q̂(·; τ))

∆(λ)

)

and

f1(λ; 1, τ) =
ζ ′′′(λ; M(·; τ)

∆(λ)
) +

ζ ′′′(λ; q̂0(λ))

∆(λ)
− eiλ3τ

(
ζ
′′′
(λ; q̂(·; τ))

∆(λ)

)

C.1.2 Solution Representation

We have expressed our hitherto unknown data in terms of known data.

But not entirely, since we have been pretending that q̂(·; τ) is data when

it is not. It is now time to deal with it. Substituting the above into EFτ

and taking the remaining non-data integrands outside gives us

2πq(x, t) =
∫ ∞

−∞
eiλx−iλ3tq̂(λ)dλ−

∫
∂D−

data dλ +
∫

∂D+
data dλ

−
∫

∂D−
eiλ(x−1)eiλ3(τ−t)

(
ζ
′′(λ;q̂(·;τ))

∆(λ)

)
dλ

−
∫

∂D−
λeiλxeiλ3(τ)−t

(
ζ
′′′(λ;q̂(·;τ))

∆(λ)

)
dλ

−
∫

∂D+
eiλxeiλ3(τ−t)

(
ζ
′(λ;q̂(·;τ))

∆(λ)

)
dλ
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Our aim is to show the integrals involving q̂(·; τ) evaluate to 0. We do

this by employing Jordan’s Lemma. We see that the ratio term in the in-

tegrands we are interested in = O(|λ|−2), uniformly in arg(λ) as λ → ∞

within Clos(D±). Hence, both of these integrals evaluate to zero within

their respective closures. Having done this, we have arrived at the So-

lution Representation for the Linearised Kortweg-De Vries Equation in

terms of contour integrals around D

2πq(x, t) =
∫ ∞

−∞
eiλx−iλ3tq̂(λ)dλ

−
∫

∂D−
eiλ(x−1)−iλ3t

(
i
(

ζ ′′ + (λ; M(·; τ) + q̂0)

∆(λ)

)
− λ

(
ζ ′′′ + (λ; M(·; τ) + q̂0)

∆(λ)

)
− iλ2h1(λ; τ)dλ

+
∫

∂D+
eiλx−iλ3t

(
ζ ′(λ; M(·; τ) + q̂0

∆(λ)
)− iλh2(λ; τ) + λ2h0(λ; τ)

)
dλ

(SRTτ)

Where hj, M, q̂0, ζ± are explicitly defined in the problem data.

C.2 Stage III

Having derived a Solution Representation, we define q(x, t) using (SRTτ)

and verify if it indeed solves the problem we defined in Stage I by check-

ing if it satisfies the PDE, IC, and BCs.

C.2.1 PDE

As a consequence of Uniform Convergence, we know that (x, t) ∈ (0, 1)×

(0, T) has a closed neighbourhood Ω within (0, 1)× (0, T). On Ω, eiλx′−iλ3t′ →
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0 exponentially uniformly on (x′, t′) ∈ Ω as λ→ ∞ along R or ∂D±

Therefore, all partial derivatives of q exist and are given by differentiat-

ing the integrand. Taking ∂ as defined in (SRTτ) above and integrating

therefore does satisfy the PDE.

C.2.2 Initial Condition

We aim to isolate the initial conditions from our (SRTτ). Before we ac-

complish this, note that ∀T ∈ (SRT), T can be replaced by τ, ∀τ ∈ [t, T].

So, q is equivalently defined by both (SRT) and ((SRTτ)). When we set

τ = t and t = 0, hj(λ; 0) = 0 =⇒ M(λ; 0) = 0. Thus we cancel these

terms and are left with a Solution Representation in terms of q̂0

2πq(x, 0) =
∫ ∞

−∞
eiλx q̂(λ)dλ

−
∫

∂D−
eiλ(x−1)

{
i
(

ζ ′′(λ; q̂0)

∆(λ)

)
− λ

(
ζ ′′′(λ; q̂0)

∆(λ)

)}
dλ

+
∫

∂D+
eiλx

(
ζ ′(λ; q̂0)

∆(λ)

)
dλ

Where the latter two integrals = 0 by Jordan’s Lemma.Thus, we reduce

the equation above to an Inverse Fourier Transform

=⇒ 2πq(x, 0) = q0(x), ∀x ∈ (0, 1)

We have thus shown that (SRTτ) does satisfy (IC).
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