
Michelle Ong Short title

D to N maps for the heat equation in cylindrical coordinates

Michelle Ong

July 21, 2022

Abstract

A D to N map provides the unknown boundary values given the boundary data of an
initial boundary value problem. A novel method, known as the Q equation method, was
introduced in 2021 by Fokas and van der Weele for constant coefficient linear evolution
equations on the half line. The method was generalized by Fokas, Pelloni and Smith in 2022
to study problems on the finite interval. In the present work, we significantly expand upon
these works by demonstrating applicability of the Q equation method to evolution equations
with variable coefficients. Indeed, we argue that the spatial Fourier transform traditionally
employed to derive the Q equation is unnecessary, and may be replaced by an an alternative
integral transformation, whose inverse need not be readily discernible. To illustrate the
extension, we present the D to N maps for the heat equation on a disc and an annulus.

1 Introduction

1.1 Eigenfunctions of Dn

Let n ∈ N and λ ∈ C \ {0}. Then eiλx is a formal eigenfunction of the formal differential
operator Dn with formal eigenvalue λn. We wish to find the other formal eigenfunctions with
the same eigenvalue; that is, functions which satisfy the equation Dnf = λnf . Consider the
roots of unity, ei( 2π

n
)x. When Dn is applied to this function, we have Dnei( 2π

n
)x = (2π

n )nei( 2π
n

)x,
which is of the form that we want. Further, the eigenspace of λn (i.e., the space spanned by
the eigenfunctions associated with the eigenvalue λn) has dimension n, since there are n linearly
independent eigenfunctions which, by definition, span the eigenspace.

Imposing a boundary form on the domain of the operator reduces the dimension of the
eigenspace by one. To see this, consider an example with Φ = {ϕ ∈ C∞[0, 1]}. Then any
function v in the eigenspace of Dn can be expressed as a linear combination of the eigenfunctions,

v =
∑n

j=1 αje
i( 2π
j

)x
. If we imposed a boundary condition on the domain, say ϕ(1) = 0, then for

x = 1, we have α1ei( 2π
1

) + · · ·+ αnei( 2π
n

) = 0. But dividing by ei( 2π
1

) allows us to express α1 as a
linear combination of the other eigenfunctions. In other words, one of the original eigenfunctions
is in the span of the others, so the dimension is n− 1.

We want to find the eigenfunctions of the operator Dn with eigenvalue 0. Consider a poly-
nomial of degree n− 1. Every term in the polynomial, when differentiated n times, becomes 0.
So eigenfunctions with eigenvalue 0 are xn−1, and there are n of these eigenfunctions.
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1.2 Linear superposition and IBVPs

Suppose we know a function v which satisfies[
∂

∂t
+ L

]
v(x, t) = 0,

v(0, t) = f(t),

v(1, t) = g(t),

and we want to solve the problem [
∂

∂t
+ L

]
q(x, t) = 0,

q(0, t) = f(t),

q(1, t) = g(t),

q(x, 0) = Q(x).

Because the differential operators ∂
∂t and L are linear, we can use the principle of linear super-

position. Let u = q − v. Then we have[
∂

∂t
+ L

]
u(x, t) = 0,

u(0, t) = f(t)− f(t) = 0,

u(1, t) = g(t)− g(t) = 0,

u(x, 0) = Q(x)− v(x, 0).

So the problem has been changed from one (in q) with 3 inhomogeneous equations and 1 homo-
geneous equation to one (in u) with 1 inhomogeneous equation and 3 homogeneous equations,
which is possibly easier to solve.

Consider the following initial boundary value problem:[
∂

∂t
−K ∂2

∂x2

]
q(x, t) = 0,

q(0, t) = f(t),

q(1, t) = g(t),

q(x, 0) = Q(x).

From section 5 of the lecture notes, we have already found a function v(x, t) which satisfies[
∂

∂t
−K ∂2

∂x2

]
v(x, t) = 0,

v(0, t) = f(t),

v(1, t) = g(t),

v(x, 0) = R(x).

Using linear superposition again, let u = q − v, then we have[
∂

∂t
−K ∂2

∂x2

]
u(x, t) = 0,

u(0, t) = 0,

u(1, t) = 0,

u(x, 0) = Q(x)−R(x).
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This is an easier problem to solve, as we have only one inhomogeneous equation. In fact, we
have already found u(x, t) in question 5 of problem set 3. Then q = u+ v.

1.3 The Q equation method for 1 dimensional heat equation

Consider again the IBVP from section 1.2:[
∂

∂t
−K ∂2

∂x2

]
q(x, t) = 0,

q(0, t) = f(t),

q(1, t) = g(t),

q(x, 0) = Q(x).

This is a problem involving the heat equation in one spatial dimension. We will use the Q
equation method to solve the D to N map for this problem; that is, we wish to find qx(0, t) and
qx(1, t).

First, extend the spatial domain of q to the real line by the rule q(x, t) = 0 if x /∈ [0, 1]. Then
we can apply the Fourier exponential transform to the PDE:

F [qt(x, t)](λ) +KF [−qxx(x, t)](λ) = 0

=⇒
∫ 1

0
qt(x, t)e

−iλx dx−K
∫ 1

0
qxx(x, t)e−iλx dx = 0,

writing out the Fourier transform explicitly, so we get

d

dt

∫ 1

0
q(x, t)e−iλx dx−K

(
e−iλx (qx(1, t) + iλq(1, t))− (qx(0, t) + iλq(0, t))− λ2

∫ 1

0
q(x, t)e−iλx dx

)
= 0,

bringing the time derivative out of the integral and integrating by parts twice, which gives us

d

dt
F [q](λ; t) +Kλ2F [q](λ; t) = −K

(
(qx(0, t) + iλq(0, t))− e−iλx (qx(1, t) + iλq(1, t))

)
.

This equation, which relates the Fourier transform of q to the time derivative of the Fourier
transform of q, where q satisfies a given PDE and BCs (or, equivalently, a differential operator),
is called a Q equation.

Next, we reduce the problem by applying the Fourier exponential series transform Fser on the
interval [−T/2, T/2] of the time variable in the Q equation. While none of the functions involved
are defined for t < 0, corollary 2.5.7 of the lecture notes shows that this is not a problem, as
long as we extend the definitions from [0, T ] to [−T/2, T/2] appropriately.

For notational simplicity, we define

q̂(λ; t) := F [q](λ; t) =

∫ ∞
−∞

q(x, t)e−iλx,

where F denotes the Fourier exponential transform and the domain of q(·, t) has been extended
from the interval I to (−∞,∞) as 0 everywhere outside of I.

Then the Q equation is[
∂

∂t
+Kλ2

]
q̂(λ; t) = −K

((
iλf(t) + a(t)

)
− e−iλ

(
iλg(t) + b(t)

))
, (1)
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in which f and g are the boundary data of the problem, and the unknown Neumann boundary
values (which we seek) are denoted by

a(t) := qx(0, t),

b(t) := qx(1, t).

We denote

Fj := Fser[f ](j) =
1

T

∫ T/2

−T/2
f(t)e−ijωt dt,

Gj := Fser[g](j),

Aj := Fser[a](j),

Bj := Fser[b](j),

qj(λ) := Fser[q̂(λ; ·)](j),

where ω := 2π
T . Then, by corollary 2.5.7,

f(t) =
∑
j∈Z

Fje
ijωt,

we have similar expressions for g(t), a(t), and b(t), and

q̂(λ; t) =
∑
j∈Z

qj(λ)eijωt =⇒ ∂

∂t
q̂(λ; t) =

∑
j∈Z

ijωqj(λ)eijωt.

Substituting these into 1, we find∑
j∈Z

eijωt
(
iωj +Kλ2

)
qj(λ) =

∑
j∈Z

eijωt
(

iλFj +Aj − e−iλiλGj − e−iλBj

)
.

Hence, by corollary 2.5.5 of the lecture notes, for all j ∈ Z,(
iωj +Kλ2

)
qj(λ) = −K

(
iλ
(
Fj − e−iλGj

)
+Aj − e−iλBj

)
. (2)

So we have reduced the original problem to that of finding the sequences (Aj)j∈Z and (Bj)j∈Z.
Equation 2 holds for all λ such that q̂(λ; t) makes sense. But

q̂(λ; t) =

∫ ∞
−∞

q(x, t)e−iλx dx =

∫ 1

0
q(x, t)e−iλx dx.

The integrand is continuous, so we only have to check if the integral converges to something
finite.

Suppose λ = u+ iv for some u, v ∈ R. Then

|q̂(λ; t)| =
∣∣∣∣∫ 1

0
q(x, t)e−iuxevx dx

∣∣∣∣
6
∫ 1

0
|q(x, t)|

∣∣e−iux
∣∣ |evx| dx

=

∫ 1

0
|q(x, t)| |evx| dx

6 ev max
x∈[0,1]

|q(x, t)| (1− 0)

<∞,
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because q is continuous. So equation 2 is true for all λ ∈ C. In particular, it is true for those λ
for which iωj +Kλ2 = 0. For each j ∈ Z \ {0}, there are two such λ, λj and −λj , such that

λj = e− sgn(j)iπ/4

√
ω |j|
K

.

Note that this works for j < 0 as well as j > 0, since we are taking the square root of a positive
number, and that because the point e±iπ/2 lies on the unit circle, we can take its square root by
dividing the argument by 2.

We also check if qj(±λj) is finite:

|qj(λ)| =

∣∣∣∣∣ 1

T

∫ T/2

−T/2
q̂(λ; t)e−ijωt dt

∣∣∣∣∣
6

1

T

∫ T/2

−T/2
|q̂(λ; t)|

∣∣e−ijωt
∣∣ dt

6
1

T

(
T

2
−
(
−T

2

))
max

t∈[−T/2, T/2]
|q̂(λ; t)|

6 eIm(λ) max
t∈[−T/2, T/2], x∈[0,1]

|q(x, t)|

<∞,

because q is continuous in both x and t. So qj(±λj) is finite and we can say that the left hand
side of equation 2 is zero at λ = ±λj for all j ∈ Z \ {0}.

This yields two linear equations:(
1 −e−iλj

1 −eiλj

)(
Aj
Bj

)
=

(
−iλj

(
Fj − e−iλjGj

)
iλj
(
Fj − eiλjGj

) ) .
Since the columns

(
1
1

)
and

(
−e−iλj

−eiλj

)
are linearly independent, the system has full rank

and may be solved for Aj and Bj . Let m = iλj . Then(
1 −e−m −m (Fj − e−mGj)
1 −em m (Fj − emGj)

)
=⇒

(
1 −e−m m (Fj − e−mGj)
0 em − e−m −2mFj + (me−m +mem)Gj

)
=⇒

(
1 −e−m m (Fj − e−mGj)

0 1 −2m
em−e−mFj +

m(e−m+em)
em−e−m Gj

)
,

noting that in the last line m 6= 0 so we are not dividing by 0. So for all j ∈ Z \ {0}, we have

Bj =
−2m

em − e−m
Fj +

m (e−m + em)

em − e−m
Gj

= −m csch(m)Fj +m coth(m)Gj ,

Aj = e−mBj +m
(
Fj − e−mGj

)
= m(1− e−m csch(m))Fj +me−m(coth(m)− 1)Gj .

In the case where j = 0, equation 2 simplifies to

−λ2q0(λ) = iλ
(
F0 − e−iλG0

)
+A0 − e−iλB0.
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Clearly λ0 = 0, but that only gives one equation for two unknowns A0 and B0. To get another
equation, differentiate equation 2 with respect to λ:

−λ2q′0(λ)− 2λq0(λ) = iF0 + λe−iλG0 + ie−iλB0

We know that q0(λ) is finite. Noting that

∂

∂λ
q̂(λ; t) =

∂

∂λ

∫ 1

0
q(x, t)e−iλx dx =

∫ 1

0
(−ix)q(x, t)e−iλx dx,

we have

∣∣q′0(λ)
∣∣ =

∣∣∣∣∣ ∂∂λ 1

T

∫ T/2

−T/2

∫ 1

0
q(x, t)e−iλx dx dt

∣∣∣∣∣
=

∣∣∣∣ 1

T

∣∣∣∣
∣∣∣∣∣
∫ T/2

−T/2

∫ 1

0
(−ix)q(x, t)e−iλx dx dt

∣∣∣∣∣
6

1

T
|−i|

∫ T/2

−T/2

∫ 1

0
|xq(x, t)|

∣∣∣e−iλx
∣∣∣ dx dt

6
(T/2 + T/2)

T
max

t∈[−T/2,T/2]

∫ 1

0
|xq(x, t)| dx

6 max
t∈[−T/2,T/2], x∈[0,1]

|xq(x, t)| (1− 0)

<∞,

since q is continuous in both x and t. So q′0 is also finite, and at λ = 0, the left side of the
equation evaluates to 0. Together with equation 2 evaluated at 0, we get the linear system(

1 −1
0 1

)(
A0

B0

)
=

(
0
−F0

)
.

This system has full rank (because it has 1s on the diagonal and is upper triangular, so the
determinant is 1). So it can be solved for A0 and B0, and in this case A0 = B0 = −F0.

But now we have (Aj)j∈Z and (Bj)j∈Z. From these, we can reconstruct functions a(t) =
qx(0, t) and b(t) = qx(1, t), using the formulae

a(t) =
∑
j∈Z

Aje
ijωt and b(t) =

∑
j∈Z

Bje
ijωt.

This completes the D to N map.

1.4 A generalisation from section 1.3

In section 1.3, the transform used to obtain the Q equation was the Fourier exponential trans-
form. However, we may also use a transform with the basis extended by one dimension, to
obtain a larger solution space for the same IBVP. Define

Fα[ϕ](λ) :=

∫ ∞
−∞

ϕ(x)
(
αe−iλx + βeiλx

)
dx

and

q̂(λ; t) := Fα[q](λ; t) =

∫ 1

0
q(x, t)

(
αe−iλx + βeiλx

)
dx.
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Note that

Fα[qxx(x, t)](λ) =

∫ 1

0
qxx(x, t)

(
αe−iλx + βeiλx

)
dx

=
[
qx(x, t)

(
αe−iλx + βeiλx

)]x=1

x=0
− α(−iλ)

∫ 1

0
qx(x, t)e−iλx dx− β(iλ)

∫ 1

0
qx(x, t)eiλx dx

=
(
αe−iλ + βeiλ

)
qx(1, t)− (α+ β)qx(0, t) + αiλ

(
q(1, t)e−iλ − q(0, t)

)
− βiλ

(
q(1, t)eiλ − q(0, t)

)
− λ2

∫ 1

0
q(x, t)

(
αe−iλx + βeiλx

)
dx

=
(
αe−iλ + βeiλ

)
b(t)− (α+ β)a(t) + iλ

(
αe−iλ − βeiλ

)
g(t)

− iλ(α− β)f(t)− λ2q̂(λ; t).

So applying Fα to the heat equation gives us the Q equation

1

K

[
∂

∂t
+Kλ2

]
q̂(λ; t) =

(
αe−iλ + βeiλ

)
b(t)− (α+ β)a(t)

+ iλ
(
αe−iλ − βeiλ

)
g(t)− iλ(α− β)f(t),

which implies that

1

K

(
iωj +Kλ2

)
qj(λ) =

(
αe−iλ + βeiλ

)
Bj − (α+ β)Aj

+ iλ
(
αe−iλ − βeiλ

)
Gj − iλ(α− β)Fj .

Note that setting α = 1, β = 0 gives us equations 1 and 2. Then, picking the value of λ such
that iωj +Kλ2 = 0, we have

λj = eiπ/4

√
ωj

K
for positive integer j. So for j 6= 0, we have the system of linear equations(

1 −e−iλj

1 −eiλj

)(
Aj
Bj

)
=

(
−iλj

(
Fj − e−iλjGj

)
iλj
(
Fj − eiλjGj

) )
as before, with the first row corresponding to α = 1, β = 0, and the second corresponding to
α = 0, β = 1. For j = 0, setting α = 0, β = 1 gives us the same equation as before. So it is still
necessary to differentiate equation 2 with respect to λ to obtain another equation.

1.5 The Laplacian operator

The Laplacian differential operator ∇2 in Cartesian spatial coordinates (x, y, z) and temporal
variable t is given by

∇2u(x, y, z; t) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z; t).

The Laplacian is defined as the divergence of the gradient of a function.
It would be useful to express the Laplacian in some other coordinate systems we will be

working with. First, in domains with some circular symmetry, polar cylindrical coordinates are
convenient to use. Cartesian coordinates are expressed in terms of these as follows:

x = ρ cosϕ,

y = ρ sinϕ,

z = z,
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where ρ is the radial distance from a point to the z-axis and ϕ is the angle measured from
the positive x-axis to the radial projection onto the xy-plane. Since the z-coordinate remains
unchanged, for the purpose of deriving the Laplacian in cylindrical systems, we can ignore the
z-coordinate and work in two dimensions. Using ~i and ~j as the standard unit vectors in the
positive x and y directions, the position vector can be written as

~r = x~i+ y~j = − sinϕ~i+ cosϕ~j.

Then, the unit basis vectors in polar coordinates are

~eϕ =
−ρ sinϕ~i+ ρ cosϕ~j√
(ρ sinϕ)2 + (ρ cosϕ)2

= − sinϕ~i+ cosϕ~j,

~eρ =
cosϕ~i+ sinϕ~j√
cos2 ϕ+ sin2 ϕ

= cosϕ~i+ sinϕ~j.

So we have

~i = cosϕ~eρ − sinϕ ~eϕ,

~j = sinϕ~eρ + cosϕ ~eϕ.

We can also find the partial derivatives of the polar unit basis vectors with respect to polar
coordinates to be used later:

∂ ~eρ
∂ρ

= 0,

∂ ~eρ
∂ϕ

= − sinϕ~i+ cosϕ~j = ~eϕ,

∂ ~eϕ
∂ρ

= 0,

∂ ~eϕ
∂ϕ

= − cosϕ~i− sinϕ~j = −~eρ.

Using the chain rule, we can express the Cartesian partial derivatives in terms of polar coordi-
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nates:

∂

∂x
=

∂

∂ρ

∂ρ

∂x
+

∂

∂ϕ

∂ϕ

∂x

=
∂

∂ρ

2x

2
√
x2 + y2

− ∂

∂ϕ

y

x2 + y2

=
∂

∂ρ

ρ cosϕ

ρ
− ∂

∂ϕ

ρ sinϕ

ρ2

=
∂

∂ρ
cosϕ− ∂

∂ϕ

sinϕ

ρ
,

∂

∂y
=

∂

∂ρ

∂ρ

∂y
+

∂

∂ϕ

∂ϕ

∂y

=
∂

∂ρ
sinϕ− ∂

∂ϕ

x

x2 + y2

=
∂

∂ρ
sinϕ− ∂

∂ϕ

cosϕ

ρ
.

Then, we can express the gradient in polar coordinates.

∇ =
∂

∂x
~i+

∂

∂y
~j

=

(
∂

∂ρ
cosϕ− ∂

∂ϕ

sinϕ

ρ

)
(cosϕ~eρ − sinϕ ~eϕ) +

(
∂

∂ρ
sinϕ+

∂

∂ϕ

cosϕ

ρ

)
(sinϕ~eρ + cosϕ ~eϕ)

=

(
∂

∂ρ
cos2 ϕ+

∂

∂ρ
sin2 ϕ− ∂

∂ϕ

sinϕ cosϕ

ρ
+

∂

∂ϕ

sinϕ cosϕ

ρ

)
~eρ

+

(
− ∂

∂ρ
cosϕ sinϕ+

∂

∂ρ
cosϕ sinϕ+

∂

∂ϕ

sin2 ϕ

ρ
+

∂

∂ϕ

cos2 ϕ

ρ

)
~eϕ

=
∂

∂ρ
~eρ +

1

ρ

∂

∂ϕ
~eϕ.

We also express divergence in polar coordinates:

∇· =
(
∂

∂ρ
~eρ +

1

ρ
~eϕ

)
· (Fρ ~eρ + Fϕ ~eϕ)

= ~eρ

(
∂Fρ
∂ρ

~eρ + Fρ
∂ ~eρ
∂ρ

+
∂Fϕ
∂ρ

~eϕ + Fϕ
∂ ~eϕ
∂ρ

)
+

1

ρ
~eϕ

(
∂Fρ
∂ϕ

~eρ + Fρ
∂ ~eρ
∂ϕ

+
∂Fϕ
∂ϕ

~eϕ + Fϕ
∂ ~eϕ
∂ϕ

)
=
∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fϕ
∂ϕ

,

using earlier results and orthogonality of the polar basis vectors. Finally, the Laplacian in polar
coordinates is

∇2 = ∇ · ∇

=

(
∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fϕ
∂ϕ

)
·
(
∂

∂ρ
~eρ +

1

ρ

∂

∂ϕ
~eϕ

)
=

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
.
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In polar cylindrical coordinates, the Laplacian is then

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2
. (3)

Now, in spherical coordinates, we have

x = r cosϕ sin θ,

y = r sinϕ sin θ,

z = r cos θ,

where r is the radial distance from the origin to the point (x, y, z), the angle ϕ is defined
above, and θ is the angle from the positive z-axis. More conveniently, we can express spherical
coordinates in terms of polar cylindrical coordinates,

r =
√
ρ2 + z2,

θ = arctan
(ρ
z

)
,

ϕ = ϕ,

and conversely,

ρ = r sin θ,

which gives us

x = ρ cosϕ,

y = ρ sinϕ.

Notice that (z, ρ) are obtained from (r, θ) in the same way that (x, y) are obtained from (ρ, ϕ).
So by the preceding argument, we have

∂2

∂ρ2
+

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Adding this to the polar Laplacian in two dimensions, we get

∂2

∂x2
+

∂2

∂y2
+

∂2

∂ρ2
+

∂2

∂z2
=

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

=⇒ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

So it remains to compute ∂
∂ρ . By the chain rule,

∂

∂ρ
=

∂

∂r

∂r

∂ρ
+

∂

∂θ

∂θ

∂ρ
+

∂

∂ϕ

∂ϕ

∂ρ

=
∂

∂r

ρ√
ρ2 + z2

+
∂

∂θ

1/z

1 + ρ2/z2
+ 0

=
∂

∂r

ρ

r
+

∂

∂θ

cos θ

r
.

Substituting this and ρ = r sin θ into the above, we obtain the Laplacian in spherical coordinates,

∇2 =
1

r2 sin2 θ

∂2

∂ϕ2
+

∂2

∂r2
+

2

r

∂

∂r
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2

∂2

∂θ2
. (4)
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We now turn to an entirely different coordinate system, that of parabolic cylindrical coordi-
nates. The coordinates (σ, τ, z) are given in terms of Cartesian coordinates by

x = στ,

y =
1

2

(
τ2 − σ2),

z = z.

Here, the coordinate surfaces are confocal parabolic cylinders, with constant σ surfaces opening
towards the positive y-axis, and constant τ surfaces opening towards the negative y-axis. As
with polar cylindrical coordinates, we can ignore the z-coordinate for now. We first compute

∂σ

∂x
=

1

τ
,

∂σ

∂y
=

−1√
τ2 − 2y

=
−1

σ
,

∂τ

∂x
=

1

σ
,

∂τ

∂y
=

1√
(τ2 − σ2) + σ2

=
1

τ
.

By the chain rule,

∂

∂x
=

∂

∂σ

∂σ

∂x
+

∂

∂τ

∂τ

∂x
,

∂

∂y
=

∂

∂σ

∂σ

∂y
+

∂

∂τ

∂τ

∂y
.

Then making the appropriate substitutions, we obtain

∂2

∂x2
+

∂2

∂y2
=

(
1

τ

∂

∂σ
+

1

σ

∂

∂τ

)2

+

(
−1

σ

∂

∂σ
+

1

τ

∂

∂τ

)2

=
1

τ2

∂2

∂σ2
+

1

τσ

(
∂2

∂σ∂τ
+

∂2

∂τ∂σ

)
+

1

σ2

∂2

∂τ2
+

1

σ2

∂2

∂σ2
− 1

στ

(
∂2

∂τ∂σ
+

∂2

∂σ∂τ

)
+

1

τ2

∂2

∂τ2

=
1

τ2 + σ2

(
∂2

∂σ2
+

∂2

∂τ2

)
,

where we have assumed that the necessary conditions for Clairaut’s theorem (equality of mixed
partials) hold to justify cancelling terms in the last line. So the Laplacian in parabolic cylindrical
coordinates is

∇2 =
1

τ2 + σ2

(
∂2

∂σ2
+

∂2

∂τ2

)
+

∂2

∂z2
. (5)

1.6 Separation of variables

In the following sections, we will use the technique of separation of variables to express partial
differential equations (PDEs) as ordinary differential equations (ODEs), as ODEs are generally
easier to solve. This technique involves looking for solutions in the form u(x, y) = X(x)Y (y),
and then obtaining ODEs for X(x) and Y (y). The ODEs will contain a separation constant.
The function u(x, y) is called a separated solution.

To illustrate this technique, consider Laplace’s equation in two dimensions in rectangular
coordinates,

uxx + uyy = 0.

11
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We begin by assuming that the solution is in the form u(x, y) = X(x)Y (y). Then we have

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Dividing by u, we get
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0.

Each term depends on only one of the variables. This equation is only true if both terms are
constants that sum to 0, so we introduce a separation constant λ and obtain the ODEs

X ′′(x)− λX(x) = 0,

Y ′′(y) + λY (y) = 0.

In general, X(x) and Y (y) may be real-valued or complex-valued. If they are complex-valued,
then the separation constant is also complex. If u(x, y) is the solution to an inhomogeneous
linear PDE, then Reu(x, y) satisfies the same PDE, and Imu(x, y) satisfies the corresponding
homogeneous PDE. Further, if a linear PDE is constant coefficient, the solutions can always be
found and may be written in the form u = eαxeβy, where α, β ∈ C. If the PDE is not constant
coefficient, however, it is not guaranteed that the equation will have any nonconstant separated
solution. Nonetheless, certain classes of equations can still be solved by separation of variables,
such as equations of the form

a(x)uxx + c(y)uyy + d(x)ux + e(y)uy = 0.

We may also impose additional conditions on the separated solutions, such as boundary
conditions (BCs) or boundedness conditions. BCs specify how the solution and/or its derivatives
behave at the boundary of the (spatial) domain. (A BC on the temporal variable, at t = 0, is
usually referred to instead as an initial condition (IC).) Boundedness conditions, specified for
values of t on the whole real line, describe the behaviour of systems over a long period of time.

1.6.1 Application to heat equation

We now examine separation of variables for the heat equation in non-rectangular coordinate
systems, in one temporal and three spatial dimensions. A solution u to the heat equation in
general is

ut = K∇2u.

In polar cylindrical coordinates, the heat equation becomes

ut −K
(
uρρ +

1

ρ
uρ +

1

ρ2
uϕϕ + uzz

)
= 0.

We want to find, by repeated separation of variables, solutions in the form

u(ρ, ϕ, z; t) = R(ρ)Φ(ϕ)Z(z)T (t).

Substituting this into the heat equation and dividing by Ku, we get

T ′

KT
−
(
R′′ +R′/ρ

R
+

Φ′′/ρ2

Φ
+
Z ′′

Z

)
= 0.

Let λ = T ′

KT , so we get

T ′ − λKT = 0,

R′′ +R′/ρ

R
+

Φ′′/ρ2

Φ
+
Z ′′

Z
= λ.

12



Michelle Ong Short title

Let −µ = Z′′

Z , then

Z ′′ + µZ = 0,

R′′ +R′/ρ

R
+

(
1

ρ2

)
Φ′′

Φ
= λ+ µ.

Let −ν = Φ′′

Φ , then

Φ′′ + νΦ = 0,

R′′ +R′/ρ

R
= λ+ µ+

ν

ρ2

=⇒ R′′ +

(
1

ρ

)
R′ −

(
λ+ µ+

ν

ρ2

)
R = 0.

So we have obtained one ODE for each of the four variables, as well as three separation constants
λ, µ, ν.

Now in spherical coordinates, the heat equation is

ut −K
(

2

r
ur + urr +

cos θ

sin2 θ
uθ +

1

r2
uθθ +

1

r2 sin2 θ
uϕϕ

)
= 0.

We are looking for solutions in the form

u(r, θ, ϕ; t) = R(r)Θ(θ)Φ(ϕ)T (t).

Substituting into the heat equation and dividing by Ku, we get

T ′

KT
−
(

2R′/r +R′′

R
+

(cot θ)Θ′ + Θ′′

r2Θ
+

Φ′′

r2(sin2 θ)Φ

)
= 0.

By a similar process as above, we let

−λ =
T ′

KT
,

−µ = r2

(
2R′/r +R′′

R
+ λ

)
,

−ν =
Φ′′

Φ
.

Then,

T ′ + λKT = 0,

r2

(
2

r
R′ +R′′ + λR

)
+ µR = 0,

Φ′′ + νΦ = 0,

r2

(
R′/r +R′′

R

)
+

(cot θ) Θ′ + Θ′′

Θ
+

Φ′′

(sin2 θ)Φ
= −λr2

=⇒ sin2 θ
(
(cot θ) Θ′ + Θ′′ − µΘ

)
− νΘ = 0.

Once again, we obtain four ODEs and three separation constants.
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2 D to N map for cylindrical heat problems

2.1 Heat equation on a disc

We now turn to solving the D to N map using the Q equation method for various problems in
polar cylindrical coordinates, beginning with the simplest case of a disc. Suppose we want to
find a solution to an IBVP in the form

u(ρ, ϕ, t) = q(ρ, t)Φ(ϕ).

Define a separation constant −µ = Φ′′/Φ, which gives us two equations

Φ′′ + µΦ = 0,

qt = qρρ +
1

ρ
qρ −

µ

ρ2
.

The first of these equations is an ODE which can be solved with Φ(−π) = Φ(π) and Φ′(−π) =
Φ′(π), which gives us

Φ(ϕ) = A cos(mϕ) +B sin(mϕ),

where m ∈ N0 and µ = m2. Let

Hm[f ](k) =

∫ a

0
ρf(ρ)Jm(kρ) dρ,

where k ∈ C and Jm is the mth cylindrical Bessel function of the first kind, which is entire in k
for all nonnegative integers m. Then

Hm[qt(·, t)](k) = Hm
[
qρρ(·, t) +

1

ρ
qρ(·, t)−

µ2

ρ2

]
(k).

Consider the derivative of Hm[R] with respect to t. Defining a differential operator LmR :=

R′′(ρ) + 1
ρR
′(ρ)− µ2

ρ2
R(ρ), we have

Hm[LmR](k) =

∫ a

0
ρLmR(ρ)Jm(kρ) dρ

=

∫ a

0

[
d

dρ

(
ρR′(ρ)

)
− µ2

ρ

]
Jm(kρ) dρ

=
[
ρR′(ρ)Jm(kρ)

]ρ=a

ρ=0
− k

∫ a

0
ρR′(ρ)J ′m(kρ) dρ−

∫ a

0

µ2

ρ
Jm(kρ)R(ρ) dρ

= aR′(a)Jm(ka)−
[
R(ρ)(kρ)J ′m(kρ)

]ρ=a

ρ=0
+ k

∫ a

0
R(ρ)

d

d(kρ)

(
kρJ ′m(kρ)

)
dρ

−
∫ a

0

µ2

ρ
Jm(kρ)R(ρ) dρ

= aR′(a)Jm(ka)− kaR(a)J ′m(ka)− k2

∫ a

0
ρR(ρ)Jm(kρ) dρ

+m2

∫ a

0

1

ρ
Jm(kρ)R(ρ)(1− 1) dρ,

where we have used d
d(kρ) (kρJ ′m(kρ)) =

(
−kρ+ m2

kρ

)
Jm(kρ), because Jm satisfies Bessel’s

equation with µ = m2,

= −k2Hm[R](k) + aR′(a)Jm(ka)− kaR(a)J ′m(ka).
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So
d

dt
(Hm[q](k; t)) = −k2Hm[q](k; t) + aqρ(a, t)Jm(ka)− kaq(a, t)J ′m(ka).

Now define
Q(k, t) := −Hm[q](k; t).

Then
Qt + k2Q = akq(a, t)Jm(ka)− aqρ(a, t)Jm(ka).

This is a Q equation relating q(a, t) to qρ(a, t). (There is no q(0, t), because ρ = 0 is an interior
point of the domain.) Therefore, under assumption of time periodicity of q, we have a D to N
map that is asymptotically valid.

Consider the following problem. Suppose q(ρ, t) satisfies the heat equation, an initial condi-
tion and a Dirichlet BC on the domain ρ ∈ [0, a] and t ∈ [0,∞):

qt = K∇2q,

q(a, t) = f(t),

q(ρ, 0) = P (x),

where f(t) is known and we seek b(t) := qρ(a, t). Then the Q equation is

Qt + k2Q = aJm(ka) (kf(t)− b(t)) .

Following a similar process as we did in subsection 1.3, we apply the Fourier exponential series
transform on the time variable. Denote

Fj := Fser[f ](j),

Bj := Fser[b](j),

qj(k) := Fser[Q(k; ·)](j).

Then applying the Fourier inverse transform (having extended the domain of t appropriately)
we have

f(t) =
∑
j∈Z

Fje
ijωt,

b(t) =
∑
j∈Z

Bje
ijωt,

Q(k; t) =
∑
j∈Z

qj(k)eijωt

=⇒ Qt =
∑
j∈Z

ijωqj(k)eijωt.

Substituting these into the Q equation, we get∑
j∈Z

eijωt
(
ijω + k2

)
qj(k) =

∑
j∈Z

eijωt (kFj −Bj) aJm(ka).

Hence, for all j ∈ Z, (
ijω + k2

)
qj(k) = (kFj −Bj) aJm(ka). (6)
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We want to say that the left hand side of equation 6 is zero if ijω + k2 = 0. So we show that
Q(k, t) is finite:

|−Hm[q](k; t)| =
∣∣∣∣∫ a

0
ρq(ρ, t)Jm(kρ) dρ

∣∣∣∣
6
∫ a

0
|ρq(ρ, t)Jm(kρ)| dρ

6 max
ρ∈[0,a]

|ρq(ρ, t)Jm(kρ)|

<∞,

since q is differentiable (hence continuous) in ρ, and Jm is entire. By an earlier argument in
subsection 1.3 (replacing λ with k and q̂ with Q), this implies that qj(k) is also finite. Then
equation 6 holds for all k ∈ C, and it holds in particular for k such that

ijω + k2 = 0 =⇒ kj = e− sgn(j)iπ/4
√
ω |j|

for all j ∈ Z \ {0}. So at k = ±kj , we have

(kjFj −Bj) aJm(kja) = 0,

which implies that Bj = kjFj . When j = 0, equation 6 becomes

k2q0(k) = (k0F0 −B0) aJm(ka).

We know k0 = 0, so B0 = 0. This completes the D to N map, as we have found (Bj)j∈Z.
In the case where instead of the problem above, we know the Neumann BC b(t) and wish

to find f(t), the argument is largely the same. For nonzero j, we have Fj =
Bj
kj

, which is not a

problem as kj is nonzero. However, in the last step for j = 0, we cannot find a value for F0, so
we differentiate the coefficient equation with respect to k and obtain

k2q′0(k) + 2kq0(k) = aF0

(
Jm(ka) + kJ ′m(ka)

)
.

Then at k = k0, assuming q′0(k) is finite, we have

aF0Jm(0) = 0 =⇒ F0 = 0,

since this equation has to hold for all values of m. We check that q′0(k) is indeed finite:

∣∣q′0(k)
∣∣ =

∣∣∣∣ ∂∂kFser[Q(k; ·)](0)

∣∣∣∣
=

∣∣∣∣∣ ∂∂k 1

T

∫ T/2

−T/2
Q(k; t)e0 dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

∂

∂k

∫ T/2

−T/2

∫ a

0
ρq(ρ, t)Jm(kρ) dρ dt

∣∣∣∣∣
=

∣∣∣∣ 1

T

∣∣∣∣
∣∣∣∣∣
∫ T/2

−T/2

∫ a

0
ρ2q(ρ, t)J ′m(kρ) dρdt

∣∣∣∣∣
6

1

T
max

t∈[−T/2,T/2], ρ∈[0,a]

∣∣ρ2q(ρ, t)J ′m(kρ)
∣∣ (T/2 + T/2)(a− 0)

<∞,
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since q is continuous in both ρ and t, and J ′m is entire.
Now consider the problem involving a Robin BC, where we wish to find both the Dirichlet

and Neumann BCs. That is, on the domain ρ ∈ [0, a] and t ∈ [0,∞), we have that q(ρ, t)
satisfies:

qt = K∇2q,

q(a, t) + βqρ(a, t) = g(t),

q(ρ, 0) = P (x),

where g(t) and constant β ∈ R are known, and we seek f(t) and b(t) (as previously defined). We
denote Gj := Fser[g](j) and get g(t) =

∑
j∈ZGje

ijωt. Applying Fser to the boundary condition,
we have

Fj + βBj = Gj .

Combining this with our earlier observation that for j 6= 0,

kjFj −Bj = 0,

we have two linear equations in two unknowns. By substitution, we get

Fj =
Gj

1 + βkj
,

Bj = kj

(
Gj

1 + βkj

)
.

We are not dividing by zero here, because kj cannot be purely real (or purely imaginary), so
βkj 6= −1. For j = 0, we still have

F0 = B0 = 0.

So we have found (Fj)j∈Z and (Bj)j∈Z, which can be used to reconstruct f(t) and b(t), as desired.

2.2 Heat equation on an annulus

On an annulus, the centre of the disc is excluded from the domain, giving the spatial domain
ρ ∈ (a, b) where a, b ∈ R. For this reason, we may introduce the mth cylindrical Bessel function
of the second kind in the transform, Ym. (We could not do this previously because Ym has a
singularity at 0.) Define

Bm[f ](k) :=

∫ b

a
ρf(ρ) (αJm(kρ) + βYm(kρ)) ,

where α, β ∈ R. Then

Bm[qk(·, t)](k) = B
[
qρρ(·, t) +

1

ρ
qρ(·, t)−

m2

ρ2

]
(k)

=⇒ d

dt
Bm[qk(·, t)](k) = −k2Bm[q](k; t) + b (αJm(kb) + βYm(kb)) qρ(b, t)− kb

(
αJ ′m(kb) + βY ′m(kb)

)
q(b, t)

− a (αJm(ka) + βYm(ka)) qρ(a, t) + ka
(
αJ ′m(ka) + βY ′m(ka)

)
q(a, t).

Define
Q(k, t) := −Bm[q](k; t).
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Then we have the Q equation

k2Q+Qt = −ka
(
αJ ′m(ka) + βY ′m(ka)

)
q(a, t) + kb

(
αJ ′m(kb) + βY ′m(kb)

)
q(b, t)

+ a (αJm(ka) + βYm(ka)) qρ(a, t)− b (αJm(kb) + βYm(kb)) qρ(b, t).

On an annulus, we have BCs at both a and b. Consider first an IBVP with no Robin BCs
(i.e. only Dirichlet and Neumann BCs). Denote

q(a, t) =: d(t),

q(b, t) =: f(t),

qρ(a, t) =: g(t),

qρ(b, t) =: h(t).

By a similar process of applying Fser on t, the Q equation is reduced to(
ijω + k2

)
qj(k) = −ka

(
αJ ′m(ka) + βY ′m(ka)

)
Dj + kb

(
αJ ′m(kb) + βY ′m(kb)

)
Fj

+ a (αJm(ka) + βYm(ka))Gj − b (αJm(kb) + βYm(kb))Hj .

Again, for all j ∈ Z \ {0}, we have

kj = e− sgn(j)iπ/4
√
ω |j|,

assuming qj(k) is finite. Since Bm[f ](k) is a linear combination

α

∫ b

a
ρf(ρ)Jm(kρ) dρ+ β

∫ b

a
ρf(ρ)Ym(kρ) dρ,

and Jm, Ym are both entire on ρ ∈ (a, b), we may use similar arguments as we did to show
Hm[f ](k) was finite in section 2.1. Then qj(k) is also finite, by a previous argument. So for
k = ±kj ,

0 = −kja
(
αJ ′m(kja) + βY ′m(kja)

)
Dj + kjb

(
αJ ′m(kjb) + βY ′m(kjb)

)
Fj

+ a (αJm(kja) + βYm(kja))Gj − b (αJm(kjb) + βYm(kjb))Hj .

To obtain two linear equations, we first set α = 1, β = 0 to get

− kjaJ ′m(kja)Dj + kjbJ
′
m(kjb)Fj + aJm(kja)Gj − bJm(kjb)Hj = 0. (7)

We then set α = 0, β = 1 to get

− kjaY ′m(kja)Dj + kjbY
′
m(kjb)Fj + aYm(kja)Gj − bYm(kjb)Hj = 0. (8)

Consider the case where the Dirichlet BCs d(t), f(t) are known and the Neumann BCs g(t), h(t)
are unknown. Then the system of linear equations is(

aJm(kja) −bJm(kjb)
aYm(kja) −bYm(kjb)

)(
Gj
Hj

)
=

(
−kjaJ ′m(kja)Dj + kjbJ

′
m(kjb)Fj

−kjaY ′m(kja)Dj + kjbY
′
m(kjb)Fj

)
.

By definition, Jm(z) and Ym(z) are linearly independent. Note that for j 6= 0, kj is never real.
Since the zeros of Jm for m > 0 are all real, and a, b ∈ R, it follows that Jm(kja), Jm(kjb) are
never zero. Similarly, Ym(kja), Ym(kjb) are never zero. So this system has full rank.
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For j = 0, we first divide equation 8 by Ym(kja) to get

−kja
Y ′m(kja)

Ym(kja)
Dj + kjb

Y ′m(kjb)

Ym(kja)
Fj + a

Ym(kja)

Ym(kja)
Gj − b

Ym(kjb)

Ym(kja)
Hj = 0.

Then taking the limit as k → k0 = 0, and setting j = 0, we have

mD0 −m
(
b

a

)−m
F0 + aG0 − b

(
b

a

)−m
H0 = 0. (9)

Similarly, dividing equation 7 by Jm(kja) and taking the limit as k → k0 = 0, we get

−mD0 +m

(
b

a

)m
F0 + aG0 − b

(
b

a

)m
H0 = 0. (10)

This gives us the system of linear equations(
a −b

(
b
a

)−m
−a b

(
b
a

)m )(
G0

H0

)
=

(
−mD0 +m

(
b
a

)−m
F0

−mD0 +m
(
b
a

)m
F0

)
.

This system has full rank for all positive integers m. This completes the sequences (Gj)j∈Z
and (Hj)j∈Z, solving the D to N map. By similar arguments, we can find a full-rank system of
linear equations for both j 6= 0 and j = 0, followed by the desired sequences, in the case where
the Neumann BCs are known and the Dirichlet BCs are unknown. The same applies for any
other combination of two BCs known and two BCs unknown, or three BCs known and one BC
unknown.

Now consider instead an IBVP with two known Robin BCs, denoted

q(a, t) + γqρ(a, t) =: v(t),

q(b, t) + δqρ(b, t) =: w(t),

where none of f, g, d, h as previously defined are known, and γ, δ ∈ R. In addition to equations 7
and 8, we also obtain, by applying Fser to t in the BCs,

Dj + γGj = Vj ,

Fj + δHj = Wj .

This gives us a system of four linear equations in four unknowns:
−kjaJ ′m(kja) kjbJ

′
m(kjb) aJm(kja) −bJm(kjb)

−kjaY ′m(kja) kjbY
′
m(kjb) aYm(kja) −bYm(kjb)

1 0 γ 0
0 1 0 δ




Dj

Fj
Gj
Hj

 =


0
0
Vj
Wj

 .

The first two rows, R1 and R2, are linearly independent by definition of Jm and Ym. Note that
for j 6= 0, since the zeros of J ′m and Y ′m for m > 0 are all real, none of the entries in R1 and R2

are zero. Therefore, each of R1 and R2 is linearly independent from each of R3 and R4. Clearly,
R3 and R4 are linearly independent. So this system has full rank. For j = 0, we make use of
equations 9 and 10, and the Robin BC equations, to obtain the system

m −m
(
b
a

)m
a −b

(
b
a

)m
−m m

(
b
a

)−m
a −b

(
b
a

)−m
1 0 γ 0
0 1 0 δ




D0

F0

G0

H0

 =


0
0
V0

W0

 .

For positive integer m, all the rows are linearly independent and the system has full rank. So
we can reconstruct d, f, g, h in terms of v, w for all j ∈ Z.
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