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Abstract

The heat equaঞon is a parঞal differenঞal equaঞon that describes how heat is distributed in
a region over ঞme. In this project, we seek to solve the heat equaঞon on the half line where
the boundary condiঞon at one end evolves with ঞme using the Fokas method. We show
that the problem reduces to a fracঞonal linear ordinary differenঞal equaঞon (FLODE) with
a variable coefficient. Drawing from ideas in fracঞonal calculus, we then obtain a soluঞon
to the FLODE through the Frobenius method, thus solving the heat equaঞon.

Introduction

Consider the following heat equaঞon with dynamic boundary condiঞon
qt + qxx = 0, (x, t) ∈ (0, ∞) × (0, T ),
q(x, 0) = q0(x), x ∈ [0, ∞),
qx(0, t) + f (t)q(0, t) = 0, t ∈ [0, T ],

where T is a posiঞve constant.

Through the Fokas method, we find the soluঞon to be given by

2πq(x, τ ) =
∫ ∞

−∞
eiλx−λ2τ q̂0(λ) dλ −

∫
∂D+

eiλx−λ2τF (λ; T ) dλ (1)

where
F (λ; T ) =

∫ T

0
eλ2sqx(0, s) ds + iλ

∫ T

0
eλ2sq(0, s) ds,

and D+ = {λ ∈ C+ : ℜ(λ2) < 0}.
Our goal is to express this soluঞon in terms of known data. Through a process known
as Dirichlet-to-Neumann Map, we are able to express the soluঞon solely in terms of one
boundary value, and reduce the problem to simply solving for that boundary value. We
have effecঞvely reduced the problem to solving just for q(0, s) in

q̂0(−i
√

−iρ)− =
∫ T

0
eiρs(

√
−iρ − f (s))q(0, s) ds. (2)

Fractional Integral and Fractional Derivative

Definiࢼon1. For 0 < α < 1, the Liouville le[-sided fracࢼonal integral on R is defined as

(Iα
+y)(x) := 1

Γ(α)

∫ x

−∞

y(t) dt

(x − t)1−α
, (3)

Definiࢼon2. For 0 < α < 1, the Caputo derivaࢼve is defined as
(CDα

+y)(x) := (I1−α
+ Dy)(x) (4)

where D = d
dx.

Property1. For 0 < α < 1 and ℜ(β) > 1,(
CDα

+(t)β−1
)

(x) = Γ(β)
Γ(β − α)

(x)β−α−1. (5)

In parࢼcular, (
CDα

+1
)

(x) = 0

Fourier Transform of Fractional Integrals and Derivatves

Theorem2. Suppose q is a funcࢼon in the Schwartz space such that

q(s) =
{

q(s) if s ≥ 0
0 otherwise.

Then
(FIα

+q)(x) = q̂(x)
(−ix)α

,

where q̂(x) = (Fq)(x).

Corollary2.1. Suppose that q and α are as the same in Theorem 2 and q(0) = 0, then
(FCDα

+q)(x) = (−ix)αq̂(x).

α-analyticity and Power Rule

Definiࢼon 3. Let α ∈ (0, 1] and f (x) be a real funcࢼon defined on some interval [a, b] and
x0 ∈ [a, b]. Then f(x) is said to be α-analyࢼc at x0 if there exists an interval N(x0) such that for
all x ∈ N(x0), f(x) can be expressed as

∑∞
n=0 an(x − x0)nα.

Proposiࢼon3. Let α ∈ (0, 1]. If f (x) is α-analyࢼc at x0, with convergence radius ρ, then

(CDα
+f )(x) =

CDα
a+

( ∞∑
n=0

an(t − x0)nα
)(x) =

∞∑
n=0

an(CDα
a+(t − x0)nα)(x).

Theorem4. Let α ∈ (0, 1], and let f (x) = q(x) where q(x) is as defined in Theorem 2 and such
that f (x) =

∑∞
n=0 anxnα. Then,

(CDα
+f )(x) =

∞∑
n=1

an
Γ(nα + 1)

Γ((n − 1)α + 1)
x(n−1)α.

Solving the Fractional Linear Ordinary Differential
Equation via the method of Frobenius

By taking the Fourier inverse of the RHS of Equaঞon 2 and using Theorem 2 ,Equaঞon 2
reduces to a Fracঞonal Linear Ordinary Differenঞal Equaঞon of the form

(CD
1/2
+ y)(t) − f (t)y(t) = g(t) (6)

where y(t) = q(0, t) and g(t) = 1
2π

∫ ∞

−∞
e−iρtq̂0(−i

√
−iρ) dρ. Suppose that y(t) is α-analyঞc

about the α-ordinary point 0. We seek the series soluঞon of the form

y(t) =
∞∑

n=0
antn/2.

By Theorem 4,

(CD
1/2
+ y)(t) =

∞∑
n=1

an
Γ(n/2 + 1)

Γ((n − 1)/2 + 1)
t(n−1)/2.

Further suppose that f (t) and g(t) are also α-analyঞc about 0, i.e f (t) =
∞∑

n=0
bntn/2 and g(t) =

∞∑
n=0

cntn/2. We can express the coefficients an+1 in terms of a0, bn and

cn by the following recurrence relaঞon

an+1 =
Γ(n+2

2 )
Γ(n+3

2 )

(
n∑

k=0
akbn−k + cn

)
with a0 = 0 by necessity of Corollary 2.1. We can thus compute the coefficients of q(0, t),
which will then lead us to the soluঞon of the heat equaঞon.

Plots of Solutions to FLODE
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Figure 2:Plot of y(t) at 50th order of approximaঞon where f (t) = t
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Applications of Fractional Differential Equations

In systems where anomalous dynamics are present, fracঞonal differenঞal equaঞons are
more accurate than differenঞal equaঞons with classical derivaঞves in modelling anomalous
processes. For example, the PorousMedium Equaঞon (PME) whichmodels non-linear heat
flow, and gas flow in porous medium, has been extended into fracঞonal forms to account
for anomalous diffusion which then have concrete applicaঞons such as in the study of
moisture dispersion in porous construcঞon materials.
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