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Abstract

The heat equation is a partial differential equation that describes how heat is distributed in
a region over time. In this project, we seek to solve the heat equation on the half line where
the boundary condition at one end evolves with time using the Fokas method. We show
that the problem reduces to a fractional linear ordinary differential equation (FLODE) with
a variable coefficient. Drawing from ideas in fractional calculus, we then obtain a solution
to the FLODE through the Frobenius method, thus solving the heat equation.
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Fourier Transform of Fractional Integrals and Derivatves

Consider the following heat equation with dynamic boundary condition

qt + Quz = 0, (x,t) € (0,00) x (0,T),

q(z,0) = qo(z), r € |0,00),

q.(0,t) + f(t)q(0,t) =0, t e 0,7,
where 1" is a positive constant.

Through the Fokas method, we find the solution to be given by
omq(x, T) = / e AT E(N) dA — / eMNTR(NT) dA (1)

—00
oD*

where

F()\;T):/OT *q.(0, s)d8+2)\/ °q(0, s) ds,

and D" ={\ e C": R(\*) < 0}

Our goal is to express this solution in terms of known data. Through a process known
as Dirichlet-to-Neumann Map, we are able to express the solution solely in terms of one
boundary value, and reduce the problem to simply solving for that boundary value. We
have effectively reduced the problem to solving just for ¢(0, s) in

o~/ i)~ = [ P (ip— 1(s))a(0,) ds 2)

Fractional Integral and Fractional Derivative

Definition 1. For 0 < o < 1, the Liouville left-sided fractional integral on R is defined as

1)@ = e [ 3

N

Definition 2. For 0 < o« < 1, the Caputo derivative is defined as

CD%y)(z) == (I Dy)(a) (4)
where D = L.
Property 1. For 0 < o« < 1 and R(B) > 1
[
(CD80) @) = g g @ 5

In particular,

Theorem 2. Suppose q Is a function in the Schwartz space such that

a(s) = {q(s) ifs>0

0 otherwise.
Then (@)
a g\
<II+Q>(x> T (—il')a’

where §(x) = (Fq)(x).
Corollary 2.1. Suppose that q and « are as the same in Theorem 2 and ¢(0) = 0, then
(FCD%q)(x) = (—iz)"q(x).

a-analyticity and Power Rule

Definition 3. Let o € (0,1] and f(x) be a real function defined on some interval |a,b| and
xy € |a, bl. Then f(x) is said to be a-analytic at xq if there exists an interval N (xq) such that for
all x € N(xy), f(x) can be expressed as > ", an(x — xy)""

Proposition 3. Let o € (0, 1]. If f(x) is a-analytic at x, with convergence radius p, then

(CDYf)(x) = (CDO‘ (Z an(t — xg ”O‘)) Z a, (YD, (t — 20)")(2).

Theorem 4. et o € (0, 1], and let f(x)
that f(x) = > .2, a,x™®. Then,

C a nOé —+ 1) (n_1>a
D n °
Z : (n—1a+ 1)x

= q(x) where q(x) is as defined in Theorem 2 and such

Solving the Fractional Linear Ordinary Differential
Equation via the method of Frobenius

By taking the Fourier inverse of the RHS of Equation 2 and using Theorem 2 ,Equation 2
reduces to a Fractional Linear Ordinary Differential Equation of the form

(“Dy)(t) = F(B)y(t) = (1) (6)
where y(t) = ¢(0,t) and g(t) = %/OO e ""Go(—in/—ip) dp. Suppose that y(t) is a-analytic

about the a-ordinary point 0. We seek the series solution of the form

o
= Z ant™?.
n=0

By Theorem 4,

0D1/2 Zan ['(n/2+1) 4n=1)/2
N(n—1)/2+1)

Further suppose that f(t) and g¢g(t) are also a-analytic about O, ie f(t) =

Z b, t"? and g(t Z c, "2, We can express the coefficients a,; In terms of ag, b,, and

n=0 n=0
¢, by the following recurrence relation

n+2

n
Ap+1 = n+3 (Z akbn kT Cn)

with ag = 0 by necessity of Corollary 2.1. We can thus compute the coefficients of ¢(0,t),
which will then lead us to the solution of the heat equation.

Heat Equation with Dynamic Boundary Condition Reduces to
Fractional Linear Ordinary Differential Equation

Plots of Solutions to FLODE

| | | | |
0.2 0.4 0.6 0.8 1.0
t

Figure 1:Plot of y(t) at 50" order of approximation where f(t) = t2 — 3t + 142 + 12 and g(t) = t2 + Lt —2t2 +- 12
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Figure 2:Plot of y(t) at 50" order of approximation where f(¢) = ¢z — 2t + it% +t2and g(t) = t2 +t — 2t2 + 12

Applications of Fractional Differential Equations

In systems where anomalous dynamics are present, fractional differential equations are
more accurate than differential equations with classical derivatives in modelling anomalous
processes. For example, the Porous Medium Equation (PME) which models non-linear heat
flow, and gas flow in porous medium, has been extended into fractional forms to account
for anomalous diffusion which then have concrete applications such as in the study of
moisture dispersion in porous construction materials.
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