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Finding Zeros of Exponential Sums

by Wang Yanhua

In this paper, I present analytic formulae for the zeros of some cases of ex-

ponential sums, and a complex root finder algorithm implemented in a Julia

package.

In general, there is no analytic formula for the zeros of exponential sums.

However, their zeros correspond to the eigenvalues of differential opera-

tors, so finding the zeros with good accuracy is crucial to solving differential

equations.

In the analytical part, I derived formulae for asymptotic loci of zeros

based on the theory of Langer. I showed that if an exponential sum satisfies

certain properties, then we can obtain asymptotic formulae for all zeros with

the modulus being sufficiently large.

In the numerical part, I designed a tail-recursive subdivision algorithm

that finds approximations of zeros of an analytic function within a given

rectangular domain on the complex plane. I implemented the algorithm in

an open-source package in Julia, and designed unit tests and randomised

testing to evaluate its effectiveness.
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Chapter 1

Introduction

The goal of this paper is simple. Given an exponential sum of the form

f (z) =
n

∑
j=1

Ajebjz, (1.1)

where Aj, bj ∈ C, we want to know where its zeros are.

Exponential sums arise in the study of monomial symbol differential op-

erators. Their zeros correspond to the eigenvalues of the differential opera-

tor, so finding the zeros with good accuracy is crucial to solving differential

equations. Solving differential equations is important as they model many

processes and systems, such as heat transfer and water waves.

For the simplest examples of exponential sums, such as sine and cosine,

it is easy to find the zeros exactly, but this is not possible in general.

There are two parts to my project. In the first part, I derive an analytical

method, based on the theory of Langer, to find the asymptotic locus of zeros.

The second part is numerical. I will be using the argument principle, a

theorem in complex analysis. The argument principle can be used to find

the number of zeros of a given exponential sum that are contained within

a given finite region. By successively applying this theorem to smaller re-

gions, I numerically locate the zeros of exponential sums within a given
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region. The algorithm is available to use as part of an open-source Julia

package, FindComplexZeros [4].
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Chapter 2

Preliminaries

Exponential sums arise in monomial symbol differential problems, such as

Sturm-Liouville problems.

Birkhoff first developed the asymptotic character of the solutions of

eigenvalue problems for high order linear differential operators [1]. If the

operator has monomial symbol, this characterisation reduces to studying

the locus of zeros of exponential sums.

In general, there is no analytic formula for the zeros of an exponential

sum. The fact that we have it for sine and cosine is very special.

Many have calculated the zeros for specific exponential sums as part

of their research. For example, Pelloni derived the locus of zeroes of

F0(z) = ez + eαz + eα2z, where α = e
2πi

3 , and also the zeros of its derivatives

F1(z), F2(z) [8][Proposition A.1].

However, even the apparently simple F0(z) studied by Pelloni has no

analytic formula. Pelloni only proved that they lie exactly on certain rays

and found an asymptotic formula for their distribution along these rays.

So, in most cases, we can only provide asymptotic formulae (large |z|) or

numerical approximations for the locus of zeros.
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Nevertheless, in Chapter 3, we provide an analytic formula that covers

some cases of (1.1).

2.1 Summary and discussion of Langer’s method

2.1.1 Real commensurable exponents

If the exponents bj of (1.1) are real and commensurable, Langer found an

explicit formula for the distribition of zeros [7][Theorem 1].

In this case, the exponential sum is of the form

φ(z) =
n

∑
j=0

Aj(eaz)pj , p0 = 0, (2.1)

which is a polynomial of degree pn in the quantity eaz. If this polynomial

admits as zeros the values ζ1, ζ2, · · · , ζpn , the function (2.1) vanishes if and

only if eaz = ζ j.

The zeros of (2.1) are therefore given by the formula

z =
1
a
{2mπi + log ζ j},

where j = 1, 2, · · · , pn, and m = 0,±1,±2, · · · .

They are infinite and distributed in the complex plane at regular inter-

vals of length 2π
a along pn lines which are vertical, or normal to the axis of

reals.

Example 2.1.1. Consider the exponential sum with real commensurable

exponents

f (z) = (1 + i)ez + 2ie2z + (2 + 3i)e−z. (2.2)
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By looking at the complex phase portrait of (2.2), we can see that the

zeros indeed lie on vertical lines.

FIGURE 2.1: Complex phase portrait of (2.2)

Note on complex phase portraits: In a complex phase portrait, the phase

of f (z) is colour-coded, and the zeros are the points of discontinuity.

Please refer to Appendix A to find out more.

In this paper, the portraits with axes labels are generated using my

fork of the Julia package ComplexPortraits [3]. This is because the orig-

inal axes labels are inverted, and at the time of writing, my pull request

to fix it has not been merged.

The portraits without axes labels are generated using the Julia pack-

age ComplexPhasePortrait [2].
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2.1.2 General real exponents

If the exponents are general real constants, Langer found that the zeros are

confined to a vertical strip in the complex plane, and gave a limit to the

number of zeros in any portion of the strip [7][Theorem 3]. However, he did

not provide a formula for the zeros.

Example 2.1.2. Consider the exponential sum

f (z) = (1 + i)e2πz + 2ie2z + (2 + 3i)e−z. (2.3)

FIGURE 2.2: Complex phase portrait of (2.3)

2.1.3 General complex exponents

Allowing bj to be complex, Langer located the zeros of large |z| in strips on

the complex plane [7][Theorem 8], by using a geometric method. Follow-

ing Langer’s approach, given an exponential sum (1.1), we plot the set bj
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(complex conjugates of the exponents) in the complex plane.

Construct the polygon P which (i), is convex, (ii), has vertices only at

points of the set, and (iii), includes all points of the set either in its interior

or on its perimeter. We call P the convex polygon hull of f .

Langer proves the following theorem:

Theorem 2.1.3. The zeros of (1.1) are confined for |z| > M to a finite number

of strips each of asymptotically constant width. These strips are associated

in groups with the exterior normals to the sides of P, and approach paral-

lelism with the respective normals [7].

Example 2.1.4. Consider the exponential sum

f (z) = (1 + i)eiz + (3.5 + 2i)ez + (3− i) + (2 + 3i)e−z. (2.4)

We notice that we get a triangle with vertices at 1,−1,−i when we plot

the the convex polygon hull using the conjugates of the exponents. By

looking at the complex phase portrait of (2.4), we can visually confirm

Theorem 2.1.3.
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FIGURE 2.3: Complex phase portrait of (2.4)

Furthermore, the zeros associated asymptotically with each side of P

come from the exponential sum arising from each side.

Hence, the asymptotic locus of zeros of (1.1) is the union of zeros from

the exponential sum arising from each side of the polygon.

2.1.4 Discussion

In conclusion, Langer does not provide a specific analytic solution for (1.1).

Moreover, because Langer studies functions more general than (1.1), his

asymptotic information is less precise than what we shall derive for expo-

nential sum (1.1). As we shall argue, the locus of zeros (asymptotically)

on rays, like in Figure 2.3, may often be extablished for exponential sums,

improving on Langer’s "strips" characterisation.
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Chapter 3

Analytical Method

In this chapter, we will take a look at how to obtain the zeros analytically.

I will be deriving the asymptotic locus of zeros for different cases of expo-

nential sums, based on Langer’s method.

First, we prove a lemma about convex polygons that will be useful later

on.

Lemma 3.0.1. Suppose c1, c2, · · · , cn ∈ C form a convex polygon on the com-

plex plane, anti-clockwise, and let cn+1 = c1. For k, j ∈ {1, 2, · · · , n}, where

k /∈ {j, j + 1},

ck = cj + (cj+1 − cj)(r + is)

for r, s ∈ R, s ≥ 0. Moreover, if ck, cj, cj+1 are not collinear, then s > 0.

Proof. Let α be a vector in the direction from cj to cj+1, and β is α rotated 90

degrees anti-clockwise. Then α = r
(
cj+1 − cj

)
, β = sei π

2
(
cj+1 − cj

)
, ∃r, s ∈

R. Any point in the plane may be written as

cj + α + β (3.1)

by the orthogonality of α, β. But, if the polygon is convex, then ck must

lie on or to the left of the line that passes through cj in the direction of α.
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Therefore, s ≥ 0. If ck cannot lie on that line, then s > 0. Equation (3.1) may

be re-expressed as

ck = cj + α + β

= cj + r
(
cj+1 − cj

)
+ sei π

2
(
cj+1 − cj

)
= cj +

(
cj+1 − cj

)
(r + is).

3.1 Side of polygon with 2 points as corners

The special case of noncollinear ck, cj, cj+1 suggests that a side of the convex

polygon hull of (1.1) in which there is no third exponent bk is worthy of

special attention. In this section, we study that case.

Firstly, we obtain the zeros of an exponential sum with 2 terms, which is

fairly straightforward.

Proposition 3.1.1. For A, a, B, b ∈ C, A, B 6= 0, the zeros of Aeaz + Bebz lie on

the line z =
iπ(2k+1)+log B

A
a−b , k ∈ Z.

Proof. The zeros of cosh are at odd integer multiples of iπ
2 . We calculate

0 = Aeaz + Bebz = A
(

eaz +
B
A

ebz
)

= A
(

eaz + ebz+log B
A

)
= Ae

a+b
2 z+ 1

2 log B
A

(
e

a−b
2 z− 1

2 log B
A + e−(

a−b
2 z− 1

2 log B
A )
)

= Ae
a+b

2 z+ 1
2 log B

A 2 cosh
(

a− b
2

z− 1
2

log
B
A

)
⇐⇒ a− b

2
z− 1

2
log

B
A

=
iπ(2k + 1)

2
, k ∈ Z

⇐⇒ z =
iπ(2k + 1) + log B

A
a− b

.
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As the proof shows, finding the zeros of an exponential sum with 2 terms

can be reduced to finding the zeros of cosh, which is a much simpler prob-

lem. We will use Proposition 3.1.1 as a lemma to investigate more compli-

cated exponential sums.

Theorem 3.1.2. Suppose b1, b2, · · · , bn ∈ C is the convex polygon hull of

f (z) =
N

∑
k=1

Akebkz,

anti-clockwise, n ≤ N, and bj, bj+1 are the corners of one side.

Then, the zeros of f (z) arising from that particular side lie asymptoti-

cally on the ray

z =
iπ(2m + 1) + log B

A
a− b

,

m ∈N0.

Proof. For the side formed by bj, bj+1, the zeros of Ajebjz + Aj+1ebj+1z are

given by zm =
iπ(2m+1)+log

Aj+1
Aj

bj−bj+1
, m ∈ Z, from Proposition 3.1.1.

We claim that for large |m|, the m > 0 corresponds to zeros of f . The

m << 0 zeros of Ajebjz + Aj+1ebj+1z are irrelevant because, for m << 0,

other terms Akebkz dominate both Ajebjz and Aj+1ebj+1z.

Suppose k /∈ {j, j + 1}. We want to check the behaviour of
∣∣∣∣Akebkz

Aje
bjz

∣∣∣∣ for

m→ ∞, as well as for m→ −∞. If this ratio is decaying to−∞ as m→ ∞, it

means that all other terms are decaying relative to Ajebjz + Aj+1ebj+1z since k

is arbitrary. The same applies to m → −∞. Hence, this will tell us whether

the equation of the ray uses m→ −∞ or m→ ∞.

We note from Lemma 3.0.1 that

bk = bj + (bj+1 − bj)(r + is)
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for r, s ∈ R, s > 0. Hence, we have∣∣∣ebkz
∣∣∣ = ∣∣∣ebjz

∣∣∣ ∣∣∣e[(bj+1−bj)(r−is)]z
∣∣∣ .

Substituting the above, we get∣∣∣∣∣Akebkz

Ajebjz

∣∣∣∣∣ =
∣∣∣∣∣Ak

Aj

∣∣∣∣∣ ∣∣∣e[(bj+1−bj)(r−is)]z
∣∣∣

=

∣∣∣∣∣Ak
Aj

∣∣∣∣∣
∣∣∣∣∣∣∣∣e
[(bj+1−bj)(r−is)]

iπ(2m+1)+log
Aj+1

Aj
bj−bj+1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣Ak
Aj

∣∣∣∣∣
∣∣∣∣∣e−(r−is)

[
iπ(2m+1)+log

Aj+1
Aj

]∣∣∣∣∣
=

∣∣∣∣∣Ak
Aj

∣∣∣∣∣
∣∣∣∣∣e(r−is) log(

Aj
Aj+1

)−2mrπi−rπi−(2m+1)s
∣∣∣∣∣

Because s > 0, (2m + 1) → ∞ implies
∣∣∣∣Akebkz

Aje
bjz

∣∣∣∣ → 0, and (2m + 1) → −∞

causes
∣∣∣∣Akebkz

Aje
bjz

∣∣∣∣→ ∞. Hence, (2m + 1) > 0, which implies m ∈N0.

3.2 Side of polygon with 3 collinear points

Next, we look at the case of 3 equally spaced collinear points on one side.

That means that 2 points form the corners, and the third point is exactly at

the center. This situation frequently comes up. For example, it occurs in the

boundary value problem

y(4)x = λy,

y(0) = 0 = y(1),

y′(0) = 0,

y′′(0)− y′(1) = 0.
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For a worked example of this problem to understand why this creates a

convex polygon hull, with sides with 3 equally spaced collinear points, refer

to Appendix B.

Firstly, we prove a lemma about the zeros of

f (z) = Aeaz + Bebz + Cecz, (3.2)

where A, B, C, a, c ∈ C, A, B, C 6= 0 and b = a+c
2 , i.e. b is the midpoint of a

and c.

If we can obtain an analytic solution to 3.2, it means that we can try

obtaining an asymptotic locus of zeros arising from a side with 3 equally

spaced collinear points, in a similar way to how we used Proposition 3.1.1

to prove Theorem 3.1.2.

Lemma 3.2.1. The zeros of 3.2 lie on the lines

z =
2

a− c

(
± arcosh

(
− B

2A
e−

1
2 log C

A

)
+

1
2

log
C
A
+ 2mπi

)
for m ∈ Z.

Proof. We calculate

0 = Aeaz + Be
a+c

2 z + Cecz

= Ae
a+c

2 z+ 1
2 log C

A

(
e

a−c
2 z− 1

2 log C
A +

B
A

e−
1
2 log C

A + e−(
a−c

2 z− 1
2 log C

A )

)
= Ae

a+c
2 z+ 1

2 log C
A

(
2 cosh

(
a− c

2
z− 1

2
log

C
A

)
+

B
A

e−
1
2 log C

A

)
which is equivalent to

2 cosh
(

a− c
2

z− 1
2

log
C
A

)
= − B

A
e−

1
2 log C

A ,

which holds if and only if

z =
2

a− c

(
± arcosh

(
− B

2A
e−

1
2 log C

A

)
+

1
2

log
C
A
+ 2mπi

)
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for m ∈ Z.

Now, we can follow the same process we used for proving Theorem

3.1.2.

Theorem 3.2.2. Suppose b1, b2, · · · , bn ∈ C is the convex polygon hull of

f (z) =
N

∑
k=1

Akebkz,

anti-clockwise, n ≤ N, and

1. bj, bj+2 are the corners of one side, forming a side with exactly 3

collinear points;

2. bj+1 is the midpoint of bj, bj+2.

Then, the zeros of f (z) arising from that particular side lie asymptoti-

cally on the rays

2
bj − bj+2

(
± arcosh

(
−

Aj+1

2Aj
e
− 1

2 log
Aj+2

Aj

)
+

1
2

log
Aj+2

Aj
+ 2mπi

)
for m ∈N.

Proof. We note that

bk = bj + (bj+2 − bj)(r + is)

for r, s ∈ R, s > 0 from Lemma 3.0.1. Hence, we have

bk = bj +
(
bj+2 − bj

)
(r− is) .

From Lemma 3.2.1, the zeros of Ajebjz + Aj+1ebj+1z + Aj+2ebj+2z are at

z =
2

bj − bj+2

(
± arcosh

(
−

Aj+1

2Aj
e
− 1

2 log
Aj+2

Aj

)
+

1
2

log
Aj+2

Aj
+ 2mπi

)
for m ∈ Z.
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Let α, β ∈ R such that

2

(
± arcosh

(
−

Aj+1

2Aj
e
− 1

2 log
Aj+2

Aj

)
+

1
2

log
Aj+2

Aj

)
= α + iβ.

We are going to compare the ratio
∣∣∣∣Akebkz

Aje
bjz

∣∣∣∣ for m→ ∞ and m→ −∞ , for

the same reason as stated in the proof of Theorem 3.1.2.∣∣∣∣∣Akebkz

Ajebjz

∣∣∣∣∣ =
∣∣∣∣∣Ak

Aj

∣∣∣∣∣
∣∣∣∣∣e(bj+2−bj)(r−is)

(
α+iβ

bj−bj+2
+ 4mπi

bj−bj+2

)∣∣∣∣∣
=

∣∣∣∣∣Ak
Aj

∣∣∣∣∣ ∣∣∣e−(r−is)(α+iβ+4mπi)
∣∣∣

=

∣∣∣∣∣Ak
Aj

∣∣∣∣∣ ∣∣∣e−(r−is)(α+iβ)−4mrπi
∣∣∣ ∣∣∣e−4msπ

∣∣∣
=⇒

∣∣∣∣∣Akebkz

Ajebjz

∣∣∣∣∣→ 0 ⇐⇒ m→ ∞.

Hence, m ∈N.

For the case where b in (3.2) is not the midpoint, I was unable to ob-

tain an analytic solution for f (z) = 0. This is because if we follow

the proof of Lemma 3.2.1, we end up with 2 cosh
(

a−c
2 z− 1

2 log C
A

)
=

− B
A ez(b− a+c

2 )− 1
2 log C

A , and when we compare real and imaginary parts, we

end up with a system of equations that can only be solved numerically. In

order to solve it, one would have to obtain the Jacobian matrix by hand, es-

timate the locations of solutions, and then enter it into a numerical solver,

which is too much work.

However, all is not lost.

Proposition 3.2.3. Suppose z0 is such that for

f (z) = Aeaz + Bebz + Cecz,
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where A, B, C, a, b, c ∈ C, A, B, C 6= 0, a, b, c are collinear on the complex

plane, f (z0) = 0. Then, f (z0 + 2ωπi) = 0 where ω, ωa, ωb, ωc ∈ Z.

Proof. We evaluate

f (z0 + 2ωπi) = Aeaz0e2aωπi + Bebz0e2bωπi + Cecz0e2cωπi

= Aeaz0 + Bebz0 + Cecz0

= 0.

In fact, we can still obtain an asymptotic locus of zeros by first locat-

ing all the zeros within a 2ωπi range using a numerical root finder (such

as the one I developed [4]), {r1, · · · , rm}. Then, the asymptotic locus of ze-

ros corresponding to that side of a convex polygon hull is {rj + 2ωπi} for

j ∈ {1, · · · , m}, and only for positive values of ω, following the logic of

Theorem 3.2.2.

3.3 Conclusion

Corollary 3.3.1. Suppose b1, b2, · · · , bn ∈ C is the convex polygon hull of

f (z) =
N

∑
k=1

Akebkz,

anti-clockwise, n ≤ N, and each side of the polygon either has

1. only 2 points forming the corners,

2. 3 collinear points, with 2 points forming the corners and the third

point exactly at the center of the side.

Then we can obtain asymptotic formulae for all zeros of f (z) with |z|

sufficiently large using Theorems 3.1.2 and 3.2.2.
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This result is significant, because many exponential sums fit the descrip-

tion above.

If one wishes to see the results from Theorems 3.1.2 and 3.2.2 in action,

they can be checked with a numerical root finder as well.
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Chapter 4

Numerical Method

4.1 Overview of method

I implemented a package in Julia ([4]) that uses the argument principle to

obtain numerical approximations for complex zeros of analytic functions.

The code has two main functions,

1. countZeros: count the number of zeros within a given rectangular do-

main

2. findZerosWithSubdivision: obtain rectangular locations of suffi-

ciently small perimeters (determined by a user-defined error toler-

ance), containing zeros of the function within a given rectangular do-

main.

4.2 Derivation of algorithm

Given a rectangular domain on the complex plane, we will approximate the

locations of the zeros of an analytic function. To achieve this end, we will be

making use of the argument principle.
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Theorem 4.2.1 (Argument Principle). If f is a meromorphic function inside

and on some closed contour C, and f has no zeros on C, then

1
2πi

∮
C

f ′(z)
f (z)

dz = Z− P

where Z and P denote the number of zeros and poles of f (z) inside the

contour C, with each zero counted as many times as its multiplicity and

order. This statement of the theorem assumes that the contour C is simple,

that is, without self-intersections, and that it is oriented anti-clockwise.

Since we are solely looking at exponential sums, which are holomorphic

(and therefore meromorphic) functions, the number of poles will be zero.

Hence, for the purposes of this paper, we can simplify the argument

principle to

1
2πi

∮
C

f ′(z)
f (z)

dz = Z.

4.2.1 Seeing the argument principle

We can refer to rectangular domains on the complex plane by their upper

left and lower right corners. For example, (−1 + i, 1 − i) is a rectangular

domain with −1 + i as the upper left corner, and 1 − i as the lower right

corner.

We can visually count the number of zeros in each of the following boxes

by using the argument principle.

In the context of our algorithm, every time the colour on the edge of the

box goes from dark blue across cyan to green in the anti-clockwise direction

(indicating that there is a jump in arg f (z) from π to −π), the count of zeros

is incremented by 1.
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(A) f (z) = z (B) f (z) = z2 (C) f (z) = sin(z)

FIGURE 4.1: Phase portraits of sample functions; the boxes are
(−1 + i, 1− i) for 4.1a and 4.1b, and (−7 + 7i, 7− 7i) for 4.1c

If the colour goes from green across cyan to dark blue (indicating that

there is a jump in arg f (z) from −π to π), the count of zeros is decremented

by 1.

In Figure 4.1, the count of zeros for the 3 phase portraits is 1, 2 and 5,

from left to right.

4.2.2 Proof of approach

The function countZeros is based off Theorem 4.2.1 .

We are interested in the points on the border where there is a jump of 2π

in arg f (z), i.e. the colour changes from dark blue across cyan to green, or

green across cyan to dark blue. We shall refer to these points as jump points.

countZeros detects jump points around a box. It does that by evaluating

the angle arg( f (zi)) at each point zi, separated by a step size. When the

difference between 2 points is larger than 2π − ε, a jump point is detected.

Then, the number of jump points can be used to determine the number of

zeros a box contains.

Let C be the closed contour of a box that contains zeros, without any
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zeros on the border, Z be the number of zeros within C, and f be a holomor-

phic function. From Theorem 4.2.1,

Z =
1

2πi

∮
C

f ′(z)
f (z)

dz

=
1

2πi

∮
C

d
dz

log( f (z))dz.

Because f (z) evaluates to a complex number, it can be expressed in its polar

form. Hence, we have,

log( f (z)) = log(| f (z)|ei arg f (z))

= log(| f (z)|) + i arg f (z)

=⇒ 1
2πi

d
dz

log( f (z)) =
1

2πi
d
dz

log(| f (z)|) + 1
2π

d
dz

arg f (z)

=⇒ Z =
1

2πi

∮
C

d
dz

log(| f (z)|)dz +
1

2π

∮
C

d
dz

arg f (z)dz

=
1

2π

∮
C

d
dz

arg f (z)dz

(since
d
dz

log(| f (z)|) is continuous, the closed

contour integral of it is 0).

Suppose there are n points on the border where arg f (z) = π or − π;

meaning there are n jump points.

The contour starts at z0, travels in a counter-clockwise direction, passes

through each jump point zi, and ends at zn+1, where z0 = zn+1.



Chapter 4. Numerical Method 22

FIGURE 4.2: Sample box where n = 2

Without loss of generality, suppose z0 is not a jump point. (If z0 is a jump

point, we can simply choose another starting point.)

Z =
1

2π

∮
C

d
dz

arg f (z)dz

=
1

2π

n+1

∑
j=1

∫ zj

zj−1

d
dz

arg f (z)dz

=
1

2π

n+1

∑
j=1

(
lim
z↑zj

arg f (z)− lim
z↓zj−1

arg f (z)

)

=
1

2π
(− arg f (z0) + arg f (zn+1)) +

1
2π

n

∑
j=1

(
lim
z↑zj

arg f (z)− lim
z↓zj

arg f (z)

)

=
1

2π

n

∑
j=1

(
lim
z↑zj

arg f (z)− lim
z↓zj

arg f (z)

)

= (number of jumps of π to − π)− (number of jumps of − π to π).

4.3 Subdivision algorithm

The generic subdivision algorithm for root finding subdivides an initial

range of interest, discards regions guaranteed not to contain zeros, and re-

peats this process until satisfactorily small area(s) can be verified to contain
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root(s) [6]. Hence, a list of rather small regions that contain roots can be

obtained, which allows us to determine the roots with a certain degree of

precision.

Subdivision methods have the advantage of being able to restrict com-

putational effort to a given region, and may terminate quickly if there are

no zeros [13].

I adapted the generic subdivision algorithm for

findZerosWithSubdivision. I define

1. an inclusion predicate Inclusion(A, f ) which holds only if the region

A contains roots of f , and the sum of the length and width of A falls

within a user-defined error margin;

2. an exclusion predicate Exclusion(A, f ) which holds only if A does not

contain a root of f .

The algorithm is recursive and written with tail-call optimisation. The

structure of my algorithm is as follows:
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Algorithm 1: Subdivision algorithm
Input : initial rectangular domain A0, function f , error

Output: array R of isolating rectangular regions for the zeros of f

1 R→ {} ;

2 Q→ {A0} ;

3 while Q is not empty do

4 A = dequeue Q ;

5 if Inclusion(A, f ) holds then

6 append A to R ;

7 else if Exclusion(A, f ) holds then

8 discard A ;

9 else

10 subdivide A ;

11 enqueue subdivisions to Q ;

12 end

4.4 Handling edge cases

The handling of roots lying very near or on the common boundary of some

subdivided regions is a delicate issue in the design of subdivision algo-

rithms. This issue is generally glossed over by existing literature [5]. Two

suggestions that I came across in [5] are

1. "Subdivide the region to the maximal extent possible, and then coa-

lesce unresolved boxes (these will include boxes that share a root on
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their boundary). Coalescing is performed by grouping together unre-

solved boxes that share a common edge, and by constructing a mini-

mal bounding box around these groups. We can then run our subdivi-

sion algorithm with these bounding boxes as starting regions to isolate

roots that they are suspected to contain."

2. "Perturb boxes during the subdivision process. If we suspect that a box

shares a root on its boundary with another, during its next subdivision

we adjust its boundaries outward by a fixed ε, while at the same time

adjusting the boundaries of the corresponding neighbours inwards."

FIGURE 4.3: f (z) = (z− 1.999)4, in the box (−2 + 2i, 2− 2i)

The method I propose is to first count the total zeros in the current re-

gion being examined, C1. In the 4 regions that it is divided into, we sum

up the count of zeros in each subregion, C2. If C1 6= C2, it indicates that

during subdivision, there is a zero lying very near or on the contour, caus-

ing countZeros not to work as intended. I handle this with an exception,

ZerosNearContourException.

1 struct ZerosNearContourException <: Exception

2 biggerBox :: Tuple
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3 count:: Int

4 potentialLocations ::Queue{Tuple{Tuple{Any ,Any},Any}}

5 end

This exception contains information on

1. the current region being examined that caused the exception to be

raised,

2. the total count of zeros it contains,

3. other regions that contain zeros, and the count of zeros they each con-

tain.

When this happens, there are some options to try obtaining better re-

sults, including changing the upper left/lower right corners of the initial

region and making the step size smaller. The error message for this excep-

tion comes with this tip for users.

The rationale for having this exception is so that users can at least have a

narrower range of regions to examine when the algorithm terminates. Fur-

thermore, checking whether C1 = C2 is a fast way to verify that the al-

gorithm is working as intended, since we need to use countZeros on each

region anyways. Lastly, it also appears to be more efficient for the user

to change the values of the input of findZerosWithSubdivision, compared

to performing coalescing or peturbation like suggested above, which could

slow the algorithm down significantly.

4.5 Testing

I used both unit-tests and randomised property-based testing for

countZeros and findZerosWithSubdivision. Tests can be found at [4].
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4.6 Conclusion

In conclusion, a complex root finding algorithm for analytic functions is

presented, with a distinct approach in addressing edge cases. The accuracy

of the numerical approximations of zeros can be controlled.
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Chapter 5

Further Work

The analytical methods described in Chapter 3 can be made more easily

accessible through implementing a dedicated library to solving exponential

sums, such as in Julia. The outline of what such a library would do is as

follows:

1. Given an exponential sum, construct the convex polygon hull from the

conjugate of its exponents

2. Check if each side of the convex polygon hull fits the criteria described

in Corollary 3.3.1

3. If the side does, include the asymptotic locus of zeros arising from it

as part of the returned result, using Theorem 3.1.2 and Theorem 3.2.2,

represented with symbolic computation such as SymPy [11]

4. If it does not, bring it to the user’s attention when returning the result

Obtaining a convex polygon hull is simple, with Julia packages such

as QHull [10] and Polyhedra [9]. Though these pacakges ignore collinear

points of each side, implementing a function that includes the collinear

points is fairly straightforward as well, by checking whether unincluded
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points fit in with the equation of the line formed by the 2 corner points. I

have previously implemented such a function as part of another project.

Therefore, implementing a library for obtaining analytical solutions of

exponential sums appears very much feasible. This library could combine

numerical and analytical approaches as well, by including a numerical root

finder.

Having such a libary would make obtaining asymptotic solutions of

exponential sums much more convenient, compared to doing it by hand,

which is laborious and mechanical.

For the numerical solver, more work could be done on making it more

precise for zeros of higher multiplicities. At the moment, it works best for

single zeros. It can still work for multiple zeros, but to a lower degree of pre-

cision. For our intended purpose, which is to find the zeros of exponential

sums, it is largely fine as they usually have single zeros. But for examples

such as cos(x)− 1, it would be helpful.

Higher computation speed, for industrial purposes, through parallel

computing can also be explored, since subdivided regions are processed in-

dependently.
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Glossary

commensurable Two non-zero real numbers are said to be commensurable

if their ratio is a rational number. 4

complex phase portrait Refer to Appendix A . 5

holomorphic A holomorphic function is a complex-valued function of one

or more complex variables that is, at every point of its domain, com-

plex differentiable in a neighborhood of the point. 19

locus In geometry, a locus (plural: loci) is a set of all points whose location

satisfies or is determined by one or more specified conditions. 1

meromorphic A meromorphic function on an open subset D of the complex

plane is a function that is holomorphic on all of D except for a set of

isolated points, which are poles of the function. 19

monomial symbol differential operator The symbol of a linear differential

operator is a polynomial that represents it, obtained by replacing each

partial derivative with a new variable. If the symbol is monomial, that

means there is only one kind of partial derivative. 1

ray In geometry, a ray is a part of a line that has a fixed starting point but

no end point. It can extend infinitely in one direction. 3
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Appendix A

Complex Phase Portraits

Complex phase portraits is a special coloring technique which visualizes func-

tions as images.

The phase of a complex number is cosφ + isinφ. It is well-defined for all

complex numbers except for zero [12].

Because of the above property, phase can be colour-coded. Phase por-

traits depict the color-coded values of the phase on the domain of the func-

tion. The zeros of analytic functions may be identified as the points of dis-

continuity on their phase portraits.

In this paper, I used phase portraits as a visual aid to locate zeros of

equations, and to demonstrate how my algorithm works.

FIGURE A.1: The phase portrait of f (z) = z
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Appendix B

Worked Example

Consider the boundary value problem

y(4)x = λy, (B.1)

y(0) = 0 = y(1), (B.2)

y′(0) = 0, (B.3)

y′′(0)− y′(1) = 0. (B.4)

Let λ = k4, k ∈ C\{0}.

Using the 4 fourth roots of 1, we get the equation

Y(x) = Aekx + Be−kx + Ceikx + De−ikx

that solves (B.1).

Hence, we have

0

0

0

0


=



1 1 1 1

ek e−k eik e−ik

1 −1 i −i

1− ek 1− e−k −(1− eik) −(1− e−ik)





A

B

C

D


. (B.5)

For the sake of simplifying calculations, on the right hand side of (B.5),

we can switch the second and third column of the first matrix, and B and C
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in the second matrix to get an equivalent expression.

In order for (B.5) to hold and to obtain a non-trivial solution, we must

have

0 = det



1 1 1 1

ek eik e−k e−ik

1 i −1 −i

1− ek −(1− eik) 1− e−k −(1− e−ik)



=
4

∑
j=1

ij det


1 i −1

eijk eij+1k eij+2k

1− eijk −
(

1− eij+1k
)

1− eij+2k


= 2ie−k + (2− 2i)e(−1−i)k − 4e−ik + 4eik + (−2− 2i)e(i−1)k

+ (2i− 4)e(1−i)k + (−2− 2i)e(1+i)k + (−4i)ek.

(The in-between working steps are left as an exercise for the reader.)

We see that we get the exponential sum

Φ(k) = 2ie−k + (2− 2i)e(−1−i)k − 4e−ik + 4eik + (−2− 2i)e(i−1)k

+ (2i− 4)e(1−i)k + (−2− 2i)e(1+i)k + (−4i)ek. (B.6)

When we plot the conjugates of the exponents of (B.6) in the complex

plane, we notice that we get a square with vertices at −1 + i, 1 + i,−1 −

i, 1− i, and all 4 sides have 3 equally spaced collinear points.



Appendix B. Worked Example 36

FIGURE B.1: The phase portrait (B.6)

Hence, we can use Theorem 3.2.2 to get the asymptotic locus of zeros

arising from each side.
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